<< Предыдущая

стр. 3
(из 16 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

Так родился спектральный анализ, с помощью которого теперь можно узнавать химический состав далеких галактик, измерять температуру и скорость вращения звезд и многое другое.
Позднее для приведения элементов в возбужденное состояние стали использовать чаще всего электрическое напряжение. Под воздействием напряжения элементы излучают свет, характеризующийся определенными длинами волн, т. е. имеющий определенную окраску. Этот свет расщепляется в спектральном аппарате (спектроскопе), главной частью которого является стеклянная или кварцевая призма. При этом образуется полоса, состоящая из отдельных линий, каждая из которых является характерной для определенного элемента.
Например, и раньше было известно, что минерал клевеит при его нагревании выделяет газ, похожий на азот. Этот газ при его исследовании с помощью спектроскопа оказался новым, еще неизвестным благородным газом. При электрическом возбуждении он испускал линии, которые уже раньше были обнаружены при анализе лучей Солнца с помощью спектроскопа. Это был своеобразный случай, когда элемент, открытый ранее на Солнце, был обнаружен Рамзаем и на Земле. Ему было присвоено название гелий, от греческого слова «гелиос» — Солнце.
Сегодня известно два вида спектров: сплошной (или тепловой) и линейчатый.
Как пишет Пономарев, «тепловой спектр содержит все длины волн, излучается он при нагревании твердых тел и не зависит от их природы.
Линейчатый спектр состоит из набора отдельных резких линий, возникает при нагревании газов и паров (когда малы взаимодействия между атомами), и — что особенно важно — этот набор линий неповторим для любого элемента. Более того, линейчатые спектры элементов не зависят от вида химических соединений, составленных из этих элементов. Следовательно, их причину надо искать в свойствах атомов.
То, что элементы однозначно и вполне определяются видом линейчатого спектра, вскоре признали все, но то, что этот же спектр характеризует отдельный атом, осознали не сразу, а лишь в 1874 году, благодаря работам знаменитого английского астрофизика Нормана Локь-ера (1836—1920). А когда осознали, сразу же пришли к неизбежному выводу: поскольку линейчатый спектр возникает внутри отдельного атома, то атом должен иметь структуру, то есть иметь составные части!»
ВТОРОЙ ЗАКОН ТЕРМОДИНАМИКИ
В
Англичанин Гэмфри Дэви г (1788—1829) стал профессором в 23 года, заслужил много научных и общественных наград, да к тому же прибавил к своему имени обращение «сэр», был избран президентом Лондонского Королевского общества.
За свою долгую жизнь в науке он провел много удачных экспериментов. В начале девятнадцатого века Дэви удалось расплавить трением лед при темпе- - j7^"" ратуре ниже нуля. Позднее опыт повторил русский ученый Петров. Бенджамен Томпсон (1753—1814), эмигрировавший из Америки после победоносного завершения Войны за независимость и получивший в Баварии титул графа Румфорда, опубликовал в 1798 году результаты опытов по сверлению пушечных стволов. В одном из его опытов при 960 оборотах бура температура просверливаемого цилиндра поднялась на 37 градусов Цельсия.
Дэви пришел к выводу, что теория теплорода несовместима как с опытами Румфорда, так и с его собственными, и выдвинул кинетическую теорию тепла, согласно которой теплота представляет колебательное движение частиц тела, причем для газов и жидкостей он допускал и вращательное движение частиц. К колебательной теории тепла примкнул и Юнг.
И все же теория теплорода продолжала господствовать. Два наиболее фундаментальных сочинения по теории тепла, относящиеся к рассматриваемому периоду, — сочинения, которые по праву вошли в золотой фонд научной литературы, — основаны на концепции теплорода. Первое из этих сочинений, «Аналитическая теория тепла» Фурье, вышло в 1822 году в Париже и представляет собой итог его многолетних исследований в области математической физики.
Другое сочинение принадлежало сыну известного французского математика Лазара Карно Сади Карно. Николо Леонар Сади Карно (1796—1832) учился в Политехнической школе. С 1814 года он работает военным инженером, а с 1819-го состоит лейтенантом при генеральном штабе. Как сын республиканского министра, находящегося в изгнании, Карно не мог продвигаться по службе и в 1828 году вышел в отставку. Он умер от холеры. Сочинение «Размышление о движущей силе огня», вышедшее в 1824 году, было единственной законченной работой Карно.
70
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
ОСНОВЫ МИРОЗДАНИЯ
71
Карно пишет: «Тепло — не что иное, как движущая сила или, вернее, движение, изменившее свой вид; это движение частиц тел; повсюду, где происходит уничтожение движущей силы, возникает теплота, в количестве, точно пропорциональном количеству исчезнувшей движущей силы. Обратно: всегда при исчезновении тепла возникает движущая сила.
Таким образом, можно высказать общее положение: движущая сила существует в природе в неизменном количестве; она, собственно говоря, никогда не создается, никогда не уничтожается; в действительности она меняет форму, то есть вызывает то один род движения, то другой, но никогда не исчезает.
По некоторым представлениям, которые сложились у меня относительно теории тепла, создание единицы силы требует затраты 2,7 единиц тепла».
По поводу этих строк знаменитый французский ученый Анри Пуанкаре восхищенно воскликнет в 1892 году: «Можно ли яснее и точнее высказать закон сохранения энергии?»
Будучи инженером, Карно занимался расчетом и строительством водяных двигателей. Но так как к тому времени по всей Франции стали все чаще применять паровые машины, то молодой инженер увлекся созданием теории тепловых машин.
Тогда еще в науке господствовали взгляды о том, что теплота является веществом. Но Сади Карно решил ответить на один из труднейших вопросов физики; при каких обязательных условиях возможно превращение теплоты в работу? Хорошо знакомый с расчетом водяных двигателей, Карно уподобил теплоту воде.
Он прекрасно знал: для того, чтобы водяная мельница работала, необходимо одно условие — вода должна падать с высокого уровня на низкий. Карно предположил: чтобы теплота могла выполнять работу, она тоже должна переходить с высокого уровня на низкий, и разность высот для воды соответствует разности температур для теплоты.
В 1824 году Сади Карно высказал мысль, благодаря которой он вошел в историю: для производства работы в тепловой машине необходима разность температур, необходимы два источника теплоты с различными температурами. Это утверждение в теории Карно является главным и называется принципом Карно. На основе выведенного им принципа Карно придумал цикл идеальной тепловой машины, которую не может превзойти никакая реальная машина.
Идеальная машина, по Карно, представляла собой простой цилиндр с поршнем. Нижняя стенка цилиндра обладает идеальной теплопроводностью, его можно поставить на горячую поверхность, например, на поверхность нагревателя, наполненного смесью расплавленного и твердого свинца, или на поверхность холодильника, например, со смесью воды и льда. Оба источника теплоты бесконечно велики.
Второй закон термодинамики утверждает, что вечный двигатель второго рода невозможен. Это утверждение является пересказом прин-
ципа Карно, и, следовательно, коэффициент полезного действия машины, работающей по циклу Карно, не может зависеть от вещества, используемого в цикле.
Карно описал цикл работы идеальной тепловой машины, показал, как можно рассчитать ее максимальный КПД.
Для этого необходимо лишь знать самую высокую и самую низкую температуру водяного пара (или любого другого теплоносителя, как отметил Карно), используемого в данной машине. Разность между этими температурами, деленная на значение высокой температуры, равна КПД машины. Температуры при этом необходимо выражать в градусах абсолютной шкалы Кельвина. Это уравнение называется вторым началом термодинамики, и ему подчиняется вся техника.
Расчет по формуле Карно показал, что первые тепловые машины не могли иметь КПД выше 7—8 процентов, а если учесть неизбежные утечки тепла в атмосферу, то полученное значение 2—3 процента следует признать значительным достижением...
Довольно быстро наряду с паром, как и предсказывал Карно, в турбинах стали использовать и газ, который можно нагреть до высокой температуры. Если температура горячего газа в турбине 800 градусов Кельвина (527 градусов Цельсия), а холодильник уменьшает ее до 300 градусов Кельвина, то максимальный КПД машины, даже в случае работы по идеальному циклу Карно, не может быть выше 62 процентов. Неизбежные тепловые потери приводят, как всегда, к уменьшению и этой цифры. У лучших образцов турбин, установленных на современных электростанциях, КПД составляет 35—40 процентов.
Карно указал на специфическую особенность теплоты. Теплота создает механическую работу только при тепловом «перепаде», т. е. наличии разности температур. Этой разностью температур определяется коэффициент полезного действия тепловых машин. Поль Клапейрон в 1834 году развил мысли Карно и ввел очень ценный в термодинамических исследованиях графический метод.
В 1850 году вышла первая работа Рудольфа Клаузиуса (1822—1888) «О движущей силе теплоты», в которой вновь после Карно и Клапейрона был поставлен вопрос об условиях превращения тепла в работу. Принцип сохранения энергии, требуя только количественного равенства, никаких условий для качественного превращения энергий не налагает. В этой работе Клаузиус разбирает теорию Карно с новой точки зрения, с точки зрения механической теории тепла.
Работа Карно была незадолго перед этим воскрешена из праха забвения Уильямом Томсоном (Лорд Кельвин) (1824—1907). «Томсон признает, — пишет в своей книге «История физики» П.С.Кудрявцев, — что взгляд Карно, что теплота в машинах только перераспределяется, но не потребляется, неверен. Но одновременно он указывает, что если отказаться от выводов Карно касательно условий превращения тепла в работу, то встречаются непреодолимые трудности. Томсон делает вывод,

V
72
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
что теория тепла требует серьезной перестройки и дополнительного экспериментального исследования. В своей работе Клаузиус полагает, что наряду с первым началом, гласящим, «что во всех случаях, когда теплота производит работу, потребляется количество тепла, пропорциональное полученной работе», следует сохранить в качестве второго начала положение Карно, что работа производится при переходе тепла от более нагретого тела к холодному. Это положение, по мнению Клаузиуса, согласуется с природой тепла, в которой всегда наблюдается переход тепла «сам собою» от горячего тела к холодному, а не наоборот.
В качестве второго начала Клаузиус и выдвигает постулат: «Теплота не может «сама собою» перейти от более холодного тела к более теплому». Слова «сама собой» не должны означать, что теплоту вообще нельзя перевести от холодного тела к нагретому (иначе не были бы возможны холодильные машины). Они означают, что не может быть таких процессов, единственным результатом которых был бы упомянутый переход, без соответствующих других «компенсационных» изменений».
Вслед за этой работой почти одновременно в 1851 году появились три доклада Томсона. Рассмотрев вопрос о превращении различных форм энергии с количественной стороны, Томсон указывает, что при одинаковой количественной величине не все виды энергии способны к превращению в одинаковой степени. Например, существуют условия, при которых превращение тепла в работу невозможно. Постулат Томсона гласит:
«При посредстве неодушевленного тела невозможно получить механического действия от какой-либо массы вещества путем охлаждения ее температуры ниже температуры самого холодного из окружающих тел»
Развивая это положение, Томсон в работе 1857 года приходит к известному выводу о господствующей в природе тенденции к переходу энергии в теплоту и к выравниванию температур, что приводит в конечном счете к снижению работоспособности всех тел до нуля, к тепловой смерти.
В 1854 году Клаузиус в статье «Об измененной форме второго начала механической теории тепла» доказывает теорему Карно, исходя из своего постулата, и, обобщая ее, дает математическое выражение второго начала в виде неравенства для круговых процессов.
В последующих работах Клаузиус вводит функцию состояния «энтропию» и дает математическую формулировку тенденции, усмотренной Томсоном, в виде положения «Энтропия вселенной стремится к максимуму». Так, в физике наряду с «царицей мира» (энергией) появилась ее «тень» (энтропия). Сам Клаузиус в конце своей работы 1865 года пишет: «Второе начало в том виде, какой я ему придал, гласит, что все совершающиеся в природе превращения в определенном направлении,
основы мироздания
73
которое я принял в качестве положительного, могут происходить сами собою, т. е. без компенсации, но в обратном, т. е. в отрицательном, направлении они могут происходить только при условии, если они компенсируются происходящими одновременно с ними положительными превращениями».
Применение этого начала ко всей Вселенной приводит к заключению, на которое впервые указал Уильям Томсон. В самом деле, если при всех происходящих во Вселенной изменениях состояния превращения в одном определенном направлении постоянно преобладают по своей величине над превращениями в противоположном направлении, то «общее состояние Вселенной должно все больше и больше изменяться в первом направлении, и, таким образом, оно должно непрерывно приближаться к предельному состоянию». ,
т
Георг Симон Ом
ЗАКОН ОМА
Проводник — это просто пассивная составная часть электрической цепи. Такое мнение превалировало вплоть до сороковых годов девятнадцатого столетия. Так зачем зря тратить время на его исследование?
Одним из первых ученых, занявшихся вопросом проводимости проводников, был Стефано Марианини (1790—1866). К своему открытию он пришел случайно, изучая напряжение батарей. Стефано заметил, что с увеличением числа элементов Вольтова столба электромагнитное воздействие на стрелку не увеличивается заметным образом. Это заставило Марианини сразу же подумать, что каждый вольтов элемент представляет собой препятствие для
прохождения тока. Он провел опыты с парами «активными» и «неактивными» (т. е. состоящими из двух медных пластинок, разделенных влажной прокладкой) и опытным путем нашел отношение, в котором современный читатель узнает частный случай закона Ома, когда сопротивление внешней цепи не принимается во внимание, как это и было в опыте Марианини.
Ом признавал заслуги Марианини, хотя его труды и не стали непосредственной помощью в работе.
Георг Симон Ом (1789—1854) родился в Эрлангене, в семье потомственного слесаря. Роль отца в воспитании мальчика была огромной, и, пожалуй, он всем тем, чего добился в жизни, обязан отцу. После окончания школы Георг поступил в городскую гимназию. Гимназия Эр-лангена курировалась университетом и представляла собой учебное заведение, соответствующее тому времени.
Успешно окончив гимназию, Георг весной 1805 года приступил к изучению математики, физики и философии на философском факультете Эрлангенского университета.
Проучившись три семестра, Ом принял приглашение занять место учителя математики в частной школе швейцарского городка Готтштадта. В 1809 году Георгу было предложено освободить место и принять приглашение на должность преподавателя математики в город Нейштадт. Другого выхода не было, и к Рождеству он перебрался на новое место. Но мечта окончить университет не покидает Ома. В 1811 году он возвращается в Эрланген. Самостоятельные занятия Ома были на-
основы мироздания
75
столько плодотворными, что он в том же году смог окончить университет, успешно защитить диссертацию и получить степень доктора философии. Сразу же по окончании университета ему была предложена должность приват-доцента кафедры математики этого же университета.
Преподавательская работа вполне соответствовала желаниям и способностям Ома. Но, проработав всего три семестра, он по материальным соображениям, которые почти всю жизнь преследовали его, вынужден был подыскивать более оплачиваемую должность.
Королевским решением от 16 декабря 1812 года Ом был назначен учителем математики и физики школы в Бамберге. В феврале 1816 года реальная школа в Бамберге была закрыта. Учителю математики предложили за ту же плату проводить занятия в переполненных классах местной подготовительной школы.
Потеряв всякую надежду найти подходящую преподавательскую работу, отчаявшийся доктор философии неожиданно получает предложение занять место учителя математики и физики в иезуитской коллегии Кельна. Он немедленно выезжает к месту будущей работы.
Здесь, в Кельне, он проработал девять лет. Именно здесь он «превратился» из математика в физика. Наличие свободного времени способствовало формированию Ома как физика-исследователя. Он с увлечением отдается новой работе, просиживая долгие часы в мастерской коллегии и в хранилище приборов.
Ом занялся исследованиями электричества. Он начал свои экспериментальные исследования с определения относительных величин проводимости различных проводников. Применив метод, который стал теперь классическим, он подключал последовательно между двумя точками цепи тонкие проводники из различных материалов одинакового диаметра и изменял их длину так, чтобы получалась определенная величина тока.
Как пишет В.В. Кошманов, «Ом знал о появлении работ Барлоу и Беккереля, в которых были описаны экспериментальные поиски закона электрических цепей. Знал он и о результатах, к которым пришли эти исследователи. Хотя и Ом, и Барлоу, и Беккерель в качестве регистрирующего прибора использовали магнитную стрелку, соблюдали особую тщательность в соединении цепи и источник электрического тока в принципе был одной и той же конструкции, однако полученные ими результаты были различными. Истина упорно ускользала от исследователей.
Необходимо было, прежде всего, устранить самый значительный источник погрешностей, каким, по мнению Ома, была гальваническая батарея.
Уже в своих первых опытах Ом заметил, что магнитное действие тока при замыкании цепи произвольной проволокой уменьшается со временем...
J
76
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
Это снижение практически не прекращалось с течением времени, и ясно было, что заниматься поиском закона электрических цепей при таком положении дел бессмысленно. Нужно было или использовать другой тип генератора электрической энергии из уже имеющихся, или создавать новый, или разрабатывать схему, в которой изменение ЭДС не сказывалось бы на результатах опыта. Ом пошел по первому пути».
После опубликования первой статьи Ома Поггендорф посоветовал ему отказаться от химических элементов и воспользоваться лучше термопарой медь — висмут, незадолго до этого введенной Зеебеком. Ом прислушался к этому совету и повторил свои опыты, собрав установку с термоэлектрической батареей, во внешнюю цепь которой включались последовательно восемь медных проволок одинакового диаметра, но разной длины. Силу тока он измерял с помощью своего рода крутильных весов, образуемых магнитной стрелкой, подвешенной на металлической нити. Когда ток, параллельный стрелке, отклонял ее, Ом закручивал нить, на которой она была подвешена, пока стрелка не оказывалась в своем обычном положении; сила тока считалась пропорциональной углу, на который закручивалась нить.
Ом пришел к выводу, что результаты опытов, проведенных с восемью различными проволоками, могут быть выражены уравнением — частное от а, деленного на х + в, где х означает интенсивность магнитного действия проводника, длина которого равна х, а а и в — константы, зависящие соответственно от возбуждающей силы и от сопротивления остальных частей цепи.
Условия опыта менялись: заменялись сопротивления и термоэлектрические пары, но результаты все равно сводились к приведенной выше формуле, которая очень просто переходит в известную нам, если заменить х силой тока, а — электродвижущей силой и в + х — общим сопротивлением цепи.
Ом проводит опыты и с четырьмя латунными проволоками — результат тот же. «Отсюда следует важный вывод, — пишет Кошманов, — что найденная Омом формула, связывающая физические величины, характеризующие процесс протекания тока в проводнике, справедлива не только для проводников из меди. По этой формуле можно рассчитывать электрические цепи независимо от материала проводников, используемых при этом...
...Кроме того, Ом установил, что постоянная в не зависит ни от возбуждающей силы, ни от длины включенной проволоки. Этот факт дает основание утверждать, что величина в характеризует неизменяемую часть цепи. А так как сложение в знаменателе полученной формулы возможно только для величин одинаковых наименований, то, следовательно, постоянная в, заключает Ом, должна характеризовать проводимость неизменяемой части цепи.
В последующих опытах Ом изучал влияние температуры проводников на их сопротивление. Он вносил исследуемые проводники в пламя,
основы мироздания
77
помещал их в воду с толченым льдом и убеждался, что электрическая проводимость проводников уменьшается с повышением температуры и увеличивается с понижением ее».
Получив свою знаменитую формулу, Ом пользуется ею для изучения действия мультипликатора Швейггера на отклонение стрелки и для изучения тока, который проходит во внешней цепи батареи элементов, в зависимости от того, как они соединены — последовательно или параллельно. Таким образом, он объясняет, чем определяется внешний ток батареи, — вопрос, который был довольно темным для первых исследователей.
Появляется в свет знаменитая статья Ома «Определение закона, по которому металлы проводят контактное электричество, вместе с наброском теории вольтаического аппарата и мультипликатора Швейггера», вышедшая в 1826 году в «Журнале физики и химии»
Появление статьи, содержащей результаты экспериментальных исследований в области электрических явлений, не произвело впечатления на ученых. Никто из них даже не мог предположить, что установленный Омом закон электрических цепей представляет собой основу для всех электротехнических расчетов будущего.
В 1827 году в Берлине он опубликовал свой главный труд «Гальваническая цепь, разработанная математически».
Ом вдохновлялся в своих исследованиях работой «Аналитическая теория тепла» (1822) Жана Батиста Фурье (1768—1830). Ученый понял, что механизм «теплового потока», о котором говорит Фурье, можно уподобить электрическому току в проводнике. И подобно тому, как в теории Фурье тепловой поток между двумя телами или между двумя точками одного и того же тела объясняется разницей температур, точно так же Ом объясняет разницей «электроскопических сил» в двух точках проводника возникновение электрического тока между ними.
Ом вводит понятия и точные определения электродвижущей силы, или «электроскопической силы», по выражению самого ученого, электропроводности и силы тока. Выразив выведенный им закон в дифференциальной форме, приводимой современными авторами, Ом записывает его и в конечных величинах для частных случаев конкретных электрических цепей, из которых особенно важна термоэлектрическая цепь. Исходя из этого, он формулирует известные законы изменения электрического напряжения вдоль цепи.
Но теоретические исследования Ома также остались незамеченными Теоретическая работа Ома разделила судьбу работы, содержащей его экспериментальные исследования. Научный мир по-прежнему выжидал. Только в 1841 году работа Ома была переведена на английский язык, в 1847 году — на итальянский, в 1860 году — на французский.
Раньше всех из зарубежных ученых закон Ома признали русские физики Ленц и Якоби. Они помогли и его международному признанию. При участии русских физиков, 5 мая 1842 года Лондонское Королевское

i
\\
78
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
общество наградило Ома золотой медалью и избрало своим членом Ом стал лишь вторым ученым Германии, удостоенным такой чести.
Очень эмоционально отозвался о заслугах немецкого ученого его американский коллега Дж Генри «Когда я первый раз прочел теорию Ома, — писал он, — то она мне показалась молнией, вдруг осветившей комнату, погруженную во мрак»
О значении исследований Ома точно сказал профессор физики Мюнхенского университета Е. Ломмель при открытии памятника ученому в 1895 году «Открытие Ома было ярким факелом, осветившим ту область электричества, которая до него была окутана мраком. Ом указал единственно правильный путь через непроходимый лес непонятных фактов. Замечательные успехи в развитии электротехники, за которыми мы с удивлением наблюдали в последние десятилетия, могли быть достигнуты только на основе открытия Ома. Лишь тот в состоянии господствовать над силами природы и управлять ими, кто сумеет разгадать законы природы. Ом вырвал у природы так долго скрываемую тайну и передал ее в руки современников».
ЭЛЕКТРОМАГНИТНАЯ ИНДУКЦИЯ
После открытий Эрстеда и Ампера стало ясно, что электричество обладает магнитной силой. Теперь необходимо было подтвердить влияние магнитных явлений на электрические. Эту задачу блистательно решил Фарадей.
Майкл Фарадей (1791—1867) родился в Лондоне, в одной из беднейших его частей. Его отец был кузнецом, а мать — дочерью земледельца-арендатора. Когда Фарадей достиг школьного возраста, его отдали в начальную школу. Курс, пройденный Фарадеем здесь, был очень узок и ограничивался только обучением чтению, письму и началам счета.
В нескольких шагах от дома, в
котором жила семья Фарадеев, находилась книжная лавка, бывшая вместе с тем и переплетным заведением. Сюда-то и попал Фарадей, закончив курс начальной школы, когда возник вопрос о выборе профессии для него. Майклу в это время минуло только 13 лет.
Уже в юношеском возрасте, когда Фарадей только что начинал свое самообразование, он стремился опираться исключительно только на факты и проверять сообщения других собственными опытами. Эти стремления доминировали в нем всю жизнь как основные черты его научной деятельности
Физические и химические опыты Фарадей стал проделывать еще мальчиком при первом же знакомстве с физикой и химией. Однажды Майкл посетил одну из лекций Гэмфри Дэви, великого английского физика. Фарадей сделал подробную запись лекции, переплел ее и отослал Дэви. Тот был настолько поражен, что предложил Фарадею работать с ним в качестве секретаря. Вскоре Дэви отправился в путешествие по Европе и взял с собой Фарадея. За два года они посетили крупнейшие европейские университеты.
Вернувшись в Лондон в 1815 году, Фарадей начал работать ассистентом в одной из лабораторий Королевского института в Лондоне. В то время это была одна из лучших физических лабораторий мира С 1816 по 1818 год Фарадей напечатал ряд мелких заметок и небольших мемуаров по химии. К 1818 году относится первая работа Фарадея по физике.
Опираясь на опыты своих предшественников и скомбинировав несколько собственных опытов, к сентябрю 1821 года Майкл напечатал
80
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
«Историю успехов электромагнетизма». Уже в это время он составил вполне правильное понятие о сущности явления отклонения магнитной стрелки под действием тока. Добившись этого успеха, Фарадей на целых десять лет оставляет занятия в области электричества, посвятив себя исследованию целого ряда предметов иного рода.
В 1823 году Фарадеем было произведено одно из важнейших открытий в области физики — он впервые добился сжижения газа, и вместе с тем установил простой, но действительный метод обращения газов в жидкость.
В 1824 году Фарадей сделал несколько открытий в области физики. Среди прочего он установил тот факт, что свет влияет на цвет стекла, изменяя его. В следующем году Фарадей снова обращается от физики к химии, и результатом его работ в этой области является открытие бензина и серно-нафталиновой кислоты.
В 1831 году Фарадей опубликовал трактат «Об особого рода оптическом обмане», послуживший основанием прекрасного и любопытного оптического снаряда, именуемого «хромотропом». В том же году вышел еще один трактат ученого «О вибрирующих пластинках».
Многие из этих работ могли сами- по себе обессмертить имя их автора. Но наиболее важными из научных работ Фарадея являются его исследования в области электромагнетизма и электрической индукции. Строго говоря, важный отдел физики, трактующий явления электромагнетизма и индукционного электричества, и имеющий в настоящее время такое громадное значение для техники, был создан Фарадеем из ничего
К тому времени, когда Фарадей окончательно посвятил себя исследованиям в области электричества, было установлено, что при обыкновенных условиях достаточно присутствия наэлектризованного тела, чтобы влияние его возбудило электричество во всяком другом теле. Вместе с тем было известно, что проволока, по которой проходит ток и которая также представляет собою наэлектризованное тело, не оказывает никакого влияния на помещенные рядом другие проволоки. Отчего зависело это исключение? Вот вопрос, который заинтересовал Фарадея и решение которого привело его к важнейшим открытиям в области индукционного электричества.
По своему обыкновению Фарадей начал ряд опытов, долженствовавших выяснить суть дела. На одну и ту же деревянную скалку Фарадей намотал параллельно друг другу две изолированные проволоки. Концы одной проволоки он соединил с батареей из десяти элементов, а концы другой — с чувствительным гальванометром. Когда был пропущен ток через первую проволоку, Фарадей обратил все свое внимание на гальванометр, ожидая заметить по колебаниям его появление тока и во второй проволоке. Однако ничего подобного не было: гальванометр оставался спокойным. Фарадей решил увеличить силу тока и ввел в цепь 120 гальванических элементов. Результат получился тот же. Фарадей повторил этот опыт десятки раз и все с тем же успехом. Всякий другой на его
основы мироздания
81
месте оставил бы опыты, убежденный, что ток, проходящий через проволоку, не оказывает никакого действия на соседнюю проволоку. Но фарадей старался всегда извлечь из своих опытов и наблюдений все, что они могут дать, и потому, не получив прямого действия на проволоку, соединенную с гальванометром, стал искать побочные явления.
Сразу же он заметил, что гальванометр, оставаясь совершенно спокойным во все время прохождения тока, приходит в колебание при самом замыкании цепи и при размыкании ее Оказалось, что в тот момент, когда в первую проволоку пропускается ток, а также когда это пропускание прекращается, во второй проволоке также возбуждается ток, имеющий в первом случае противоположное направление с первым током и одинаковое с ним во втором случае и продолжающийся всего одно мгновение Эти вторичные мгновенные токи, вызываемые влиянием первичных, названы были Фарадеем индуктивными, и это название сохранилось за ними доселе. Будучи мгновенными, моментально исчезая вслед за своим появлением, индуктивные токи не имели бы никакого практического значения, если бы Фарадей не нашел способ при помощи остроумного приспособления (коммутатора) беспрестанно прерывать и снова проводить первичный ток, идущий от батареи по первой проволоке, благодаря чему во второй проволоке беспрерывно возбуждаются все новые и новые индуктивные токи, становящиеся, таким образом, постоянными. Так был найден новый источник электрической энергии, помимо ранее известных (трения и химических процессов), — индукция, и новый вид этой энергии — индукционное электричество.
Продолжая свои опыты, Фарадей открыл далее, что достаточно простого приближения проволоки, закрученной в замкнутую кривую, к другой, по которой идет гальванический ток, чтобы в нейтральной проволоке возбудить индуктивный ток направления, обратного гальваническому току, что удаление нейтральной проволоки снова возбуждает в ней индуктивный ток уже одинакового направления с гальваническим, идущим по неподвижной проволоке, и что, наконец, эти индуктивные токи возбуждаются только во время приближения и удаления проволоки к проводнику гальванического тока, а без этого движения токи не возбуждаются, как бы близко друг к другу проволоки ни находились. Таким образом, было открыто новое явление, аналогичное вышеописанному явлению индукции при замыкании и прекращении гальванического тока.
Эти открытия вызвали в свою очередь новые. Если можно вызвать индуктивный ток замыканием и прекращением гальванического тока, то не получится ли тот же результат от намагничивания и размагничивания железа? Работы Эрстеда и Ампера установили уже родство магнетизма и электричества. Было известно, что железо делается магнитом, когда вокруг него обмотана изолированная проволока и по последней проходит гальванический ток, и что магнитные свойства этого железа прекращаются, как только прекращается ток. Исходя из этого,
82
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
Фарадей придумал такого рода опыт: вокруг железного кольца были j обмотаны две изолированные проволоки; причем одна проволока была j обмотана вокруг одной половины кольца, а другая — вокруг другой. Через | одну проволоку пропускался ток от гальванической батареи, а концы другой были соединены с гальванометром. И вот, когда ток замыкался \ или прекращался и когда, следовательно, железное кольцо намагничивалось или размагничивалось, стрелка гальванометра быстро колебалась j и затем быстро останавливалась, то есть в нейтральной проволоке возбуждались все те же мгновенные индуктивные токи — на этот раз: уже под влиянием магнетизма. Таким образом, здесь впервые магнетизм j был превращен в электричество.
Получив эти результаты, Фарадей решил разнообразить свои опыты. Вместо железного кольца он стал употреблять железную полосу. Вме- i сто возбуждения в железе магнетизма гальваническим током он намагничивал железо прикосновением его к постоянному стальному магниту. Результат получался тот же: в проволоке, обматывавшей железо, всегда! возбуждался ток в момент намагничивания и размагничивания железа. Затем Фарадей вносил в проволочную спираль стальной магнит — приближение и удаление последнего вызывало в проволоке индукционные токи. Словом, магнетизм, в смысле возбуждения индукционных , токов, действовал совершенно так же, как и гальванический ток.
В то время физиков усиленно занимало одно загадочное явление, открытое в 1824году Араго и не находившее объяснения, несмотря на; то, что этого объяснения усиленно искали такие выдающиеся ученые i того времени, как сам Араго, Ампер, Пуассон, Бабэдж и Гершель. Дело I состояло в следующем. Магнитная стрелка, свободно висящая, быстро | приходит в состояние покоя, если под нее подвести круг из немагнит-ного металла; если затем круг привести во вращательное движение, i магнитная стрелка начинает двигаться за ним. В спокойном состоянии i нельзя было открыть ни малейшего притяжения или отталкивания между 5 кругом и стрелкой, между тем как тот же круг, находившийся в дви- i жении, тянул за собою не только легкую стрелку, но и тяжелый магнит. Это поистине чудесное явление казалось ученым того времени таинственной загадкой, чем-то выходящим за пределы естественного. Фарадей, исходя из своих вышеизложенных данных, сделал предположение, что кружок немагнитного металла, под влиянием магнита, во время вращения обегается индуктивными токами, которые оказывают воздействие на магнитную стрелку и влекут ее за магнитом. И действительно, введя край кружка между полюсами большого подковообразного магнита и соединив проволокою центр и край кружка с гальванометром, Фарадей получил при вращении кружка постоянный электрический ток.
Вслед за тем Фарадей остановился на другом вызывавшем тогда общее любопытство явлении. Как известно, если посыпать на магнит железных опилок, они группируются по определенным линиям, называемым магнитными кривыми. Фарадей, обратив внимание на это явление, дал
основы мироздания
83
в 1831 году магнитным кривым название «линий магнитной силы», вошедшее затем во всеобщее употребление. Изучение этих «линий» привело Фарадея к новому открытию, оказалось, что для возбуждения индуктивных токов приближение и удаление источника от магнитного полюса необязательны. Для возбуждения токов достаточно пересечь известным образом линии магнитной силы.
Дальнейшие работы Фарадея в упомянутом направлении приобретали, с современной ему точки зрения, характер чего-то совершенно чудесного. В начале 1832 года он демонстрировал прибор, в котором возбуждались индуктивные токи без помощи магнита или гальванического тока. Прибор состоял из железной полосы, помещенной в проволочной катушке. Прибор этот при обыкновенных условиях не давал ни малейшего признака появления в нем токов; но лишь только ему давалось направление, соответствующее направлению магнитной стрелки, в проволоке возбуждался ток. Затем Фарадей давал положение магнитной стрелки одной катушке и потом вводил в нее железную полосу: ток снова возбуждался. Причиною, вызывавшею в этих случаях ток, был земной магнетизм, вызывавший индуктивные токи подобно обыкновенному магниту или гальваническому току. Чтобы нагляднее показать и доказать это, Фарадей предпринял еще один опыт, вполне подтвердивший его соображения. Он рассуждал, что если круг из немагнитного металла, например, из меди, вращаясь в положении, при котором он пересекает линии магнитной силы соседнего магнита, дает индуктивный ток, то тот же круг, вращаясь в отсутствие магнита, но в положении, при котором круг будет пересекать линии земного магнетизма, тоже должен дать индуктивный ток. И действительно, медный круг, вращаемый в горизонтальной плоскости, дал индуктивный ток, производивший заметное отклонение стрелки гальванометра.
Ряд исследований в области электрической индукции Фарадей закончил открытием, сделанным в 1835 году, «индуктирующего влияния тока на самого себя». Он выяснил, что при замыкании или размыкании гальванического тока в самой проволоке, служащей проводником для этого тока, возбуждаются моментальные индуктивные токи.
Русский физик Эмиль Христофорович Ленц (1804—1861) дал правило для определения направления индукционного тока.
«Индукционный ток всегда направлен так, что создаваемое им магнитное поле затрудняет или тормозит вызывающее индукцию движение, — отмечает А.А. Коробко-Стефанов в своей статье об электромагнитной индукции. — Например, при приближении катушки к магниту возникающий индукционный ток имеет такое направление, что созданное им магнитное поле будет противоположно магнитному полю магнита. В результате между катушкой и магнитом возникают силы отталкивания.
Правило Ленца вытекает из закона сохранения и превращения энергии. Если бы индукционные токи ускоряли вызывающее их движе-
I
i
84
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
ние, то создавалась бы работа из ничего. Катушка сама собой после небольшого толчка устремлялась бы навстречу магниту, и одновременно индукционный ток выделял бы в ней теплоту. В действительности же индукционный ток создается за счет работы по сближению магнита и катушки.
Почему возникает индукционный ток? Глубокое объяснение явления электромагнитной индукции дал английский физик Джемс Клерк Максвелл — творец законченной математической теории электромагнитного поля.
Чтобы лучше понять суть дела, рассмотрим очень простой опыт. Пусть катушка состоит из одного витка проволоки и пронизывается переменным магнитным полем, перпендикулярным к плоскости витка. В катушке, естественно, возникает индукционный ток. Исключительно смело и неожиданно истолковал этот эксперимент Максвелл. При изменении магнитного поля в пространстве, по мысли Максвелла, возникает процесс, для которого присутствие проволочного витка не имеет никакого значения. Главное здесь — возникновение замкнутых кольцевых линий электрического поля, охватывающих изменяющееся магнитное поле.
Под действием возникающего электрического поля приходят в движение электроны, и в витке возникает электрический ток. Виток — это просто прибор, позволяющий обнаружить электрическое поле. Сущность же явления электромагнитной индукции в том, что переменное магнитное поле всегда порождает в окружающем пространстве электрическое поле с замкнутыми силовыми линиями. Такое поле называется вихревым».
Изыскания в области индукции, производимой земным магнетизмом, дали Фарадею возможность высказать еще в 1832 году идею телеграфа, которая затем и легла в основу этого изобретения.
А вообще открытие электромагнитной индукции недаром относят к наиболее выдающимся открытиям XIX века — на этом явлении основана работа миллионов электродвигателей и генераторов электрического тока во всем мире...
ЗАКОН МИНИМУМА
Все животные, а также и человек питаются пищей либо растительного, либо животного происхождения. Поэтому вопрос о том, откуда именно растения берут свое питание, принадлежит к вопросам величайшего значения.
«Уже давно над этим вопросом задумывались лучшие исследователи, — пишет З.Шпау-сус. — Давно обращало на себя внимание то обстоятельство, что растение в течение своей жизни произрастает из ничтожного зернышка семени до своей нормальной величины и при этом обнаруживается громаднейший привес. Аристотель считал, что растения поглощают из почвы необходимые материалы для своего построения в их окончательной форме, так что не встречается необходимости в каких-либо преобразованиях этих материалов внутри их организма. В 1600 году Ван-Гельмонт своим опытом сумел доказать неправильность этих предположений. Он отвесил в горшки 200 фунтов сухой земли и воткнул в нее ветку вербы, вес которой был равен 5 фунтам. При обильной поливке водой эта ветвь проявляла себя как целая верба: она пустила корни и на протяжении дальнейших пяти, лет выросла в порядочное дерево весом в 164 фунта. Особенно удивило Ван-Гельмонта то обстоятельство, что земля при этом потеряла лишь 60 граммов своего первоначального веса. Таким образом, земля никоим образом не могла быть признана единственным поставщиком питательных материалов для растущего дерева, ибо в этом случае 159 фунтов привеса ветки вербы должны были бы соответствовать равновеликой убыли веса земли.
Ингенгауз и де Соссюр в конце XVIII века были учеными, впервые разработавшими современную теорию питания растений, согласно которой растения поглощают двуокись углерода из воздуха, что и имеет своим результатом более значительное увеличение веса сухого вещества растений, чем этого можно было бы ожидать на основании количеств фактически поглощенной ими двуокиси углерода. Поэтому приходится допустить, что из двуокиси углерода и воды образуется новое органическое вещество. Названные ученые уже в то время считали, что необходимо и присутствие в почве некоторых солей.
86
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
Как бы своевременны и правильны во многих отношениях ни были эти выводы, они все же оказались забытыми в начале XIX века и были заменены гумусовой теорией, которая главным образом восходит к Таеру, бывшему ее наиболее усердным защитником».
Точка зрения Таера, основателя учения о севообороте, заключалась в том, что плодородие почвы зависит исключительно от гумуса. Тот является единственным источником, снабжающим растения питательными материалами. В гумусе — рыхлой темной земле — содержится много углерода — главной составной части всех растений. По мнению защитников гумусовой теории, в нем содержатся все необходимые для жизни растений вещества в уже подготовленной форме. Соли не являются, по их мнению, особенно важными, так что относительно их происхождения и значения не стоило особенно задумываться. Гумус и вода — вот источники питания растений.
Это учение было так понятно и убедительно, что в течение длительного времени в его справедливости никто и не сомневался Один из тех, кто все же усомнился в нем, был молодой профессор химии Юстус Либих (1803—1873). Опираясь на собранные прежде факты и вместе с тем на результаты своих работ, Либих положил начало новой эпохе в сельском хозяйстве.
В своей книге «Сельскохозяйственная химия», выпущенной в 1840 году, прежде всего Либих исследовал, из каких составных частей строит растение свой организм и откуда оно добывает эти вещества. «На основе многочисленных анализов, — пишет З.Шпаусус, — ему удалось установить, что в каждом растении присутствуют десять элементов, которые все имеют величайшее значение для его нормального роста. Это следующие элементы: углерод, водород, кислород, азот, кальций, калий, фосфор, сера, магний и железо. Добавим при этом, что в настоящее время известен целый ряд элементов, присутствующих в растениях лишь в виде следов, но, тем не менее, играющих важную роль в их жизнедеятельности. Естественно, все эти вещества содержатся в организме растений не в той форме, в которой они известны в качестве химических элементов, но они являются составными частями соединений, из которых построено растение. Откуда же растения получают эти вещества9
Мы уже видели, что углерод, поглощаемый листьями в виде двуокиси углерода, поступает из атмосферы, в то время как вода поставляет растению водород и кислород. Но как обстоит дело с азотом, являющимся составной частью необходимых для жизни белков? Правда, в атмосфере азот содержится в колоссальном количестве, ибо она ведь на 78 процентов состоит из этого элемента, но лишь немногие растения способны поглощать и использовать азот из воздуха. К таким растениям относятся так называемые бобовые растения, в том числе бобы, горох и люпин. Легко убедиться в том, что в их корнях можно обнаружить клубеньки, скрывающие внутри себя бактерии. Клубеньковые бактерии
основы мироздания
87
обладают способностью переводить азот из воздуха в органические азотистые соединения, которые затем могут усваиваться соответствующими растениями. Растение дает возможность жить бактериям, а они за это готовят для своих хозяев доступный для усваивания азот. Этот процесс взаимопомощи обозначают в биологии как симбиоз.
Однако этот процесс представляет собой только исключение. Подавляющее большинство растений должно черпать азотистые соединения непосредственно из почвы, ибо они не могут усваивать непосредственно азот из воздуха. Либих был того мнения, что газообразного аммиака, образующегося при гниении органических соединений и поэтому всегда присутствующего в ничтожном количестве в атмосфере, вполне достаточно для покрытия потребности растений в азоте. Аммиак растворяется в каплях дождя, вступает во взаимодействие с двуокисью углерода с образованием карбоната аммония и в виде названной соли попадает в почву, из которой он и может быть поглощен корнями растений.
Шесть остальных элементов содержатся в виде солей в почве. Будучи растворены в воде, они могут проникать в растения через их корни. Правда, они присутствуют в почве в ограниченном количестве, однако животные и растения при распаде их остатков возвращают обратно почве те соли, которые они получили из нее во время их роста. После этого соли снова могут служить растениям питательными веществами.
На этом заканчивается круговорот, связывающий мертвую и живую природу. Растение берет из почвы и из воздуха неорганические вещества и строит из них свой организм, состоящий из органических соединений. Это растительное вещество составляет пищу животных и человека и в физиологических выделениях, а также после гибели в виде трупов этих существ поступает в почву и превращается в неорганические исходные вещества. И при этом круговороте растениям принадлежит главная роль, ибо только они способны использовать неорганические строительные материалы».
Таким образом, десять элементов имеют важнейшее значение для жизни растений. Достаточно отсутствие одного, чтобы растение погибло. Плодородие почвы всегда зависит от того элемента, который находится в почве в минимальном количестве. Это — закон, который имеет для практического сельского хозяйства в высшей степени важное значение. Либих назвал этот закон — «законом минимума». Конечно же, не надо забывать, что наряду с питательными солями существует еще и целый ряд других факторов, как водный режим почвы, температура и т. д., которые также оказывают влияние на плодородие почвы.
Но как объяснить постоянно понижающееся плодородие пахотных земель? Либих подробно разъясняет. Если земледелец возвратит обратно в почву в виде навоза все питательные вещества, которые были извлечены из почвы растениями, то содержание питательных солей в почве останется тем же самым и плодородие его участка не понизится.

88
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
основы мироздания
89
Однако если он продаст часть своих продуктов в город, то питательные соли окажутся утраченными для его участка и в будущем году они уже не будут находиться в распоряжении произрастающих на этом участке растений. При повторении такого процесса из года в год урожаи должны будут с каждым годом ухудшаться.
Либих утверждал: «Основным принципом земледелия следует считать требование, чтобы почве в полной мере было возвращено все то, что у нее было взято. В какой форме будет осуществлен этот возврат, в виде ли экскрементов животных или в виде золы или костей, — это более или менее безразлично. Наступает время, когда пашня и каждое растение будет обеспечено необходимым для него удобрением, которое будет изготовляться на химических заводах». Эти слова Либиха оправдались за истекшее время тысячу раз, но в его эпоху они неоднократно служили поводом для издевательств и острот.
«Вот что я вам скажу, коллега: я снова убеждаюсь в том, что передо мной лежит самая бесстыдная книга из всех, которые когда-либо попадали ко мне в руки. Знакомы ли вы, собственно говоря, с ее содержанием?» — с великим раздражением оценивал фон Моль, профессор Тюбингенского университета, лежавшую перед ним книгу Либиха. «Оказывается, уже не земле растительный мир обязан своим питанием, нет, растения питаются воздухом, водой и так называемыми питательными солями, которые они разыскивают в почве! Поразительно, как он еще находит хоть какое-нибудь объяснение необходимости обработки земли. Но может быть, он придет даже к тому, что земля вовсе и не нужна земледельцу и что крестьянин сможет выращивать свой хлеб в стеклянных сосудах. Вот, посмотрите, в этой газете он может прочитать единственно правильный ответ на свою чепуху!»
Фриц Рейтер в сочинении «Мой жизненный путь» откровенно издевается над Либихом: «И эта эпоха ознаменовалась значительным развитием сельского хозяйства. Профессор Либих выпустил для крестьян совершенно бессмысленную книгу... Можно было прямо-таки с ума сойти от этих терминов. Однако тот, кто был готов остаться без гроша в кармане, выполняя все советы, содержавшиеся в этой книге, и кто в то же время желал сунуть свой нос в науку, тот приобретал себе эту книгу и сидел над ней до тех пор, пока постепенно голова его не становилась одураченной ее содержанием. И когда он доходил до такого состояния, он начинал раздумывать над тем, является ли гипс веществом раздражающим или питательным (для клевера, а не для человека!) и воняет ли навоз вследствие выделения из него нашатырного спирта или вследствие того, что он по самой своей природе является вонючим веществом».
Если не хватает естественных удобрений, необходимо для покрытия расходов питательных солей вносить в почву минеральные удобрения. Так рассуждал Либих относительно производства своего «патентного удобрения». Углерод, водород и кислород растение добывает себе в
достаточном количестве естественным путем. Либих считал возможным утверждать то же самое и относительно азота. В магнии, железе и сере растения нуждаются лишь в незначительной степени, и они имеются в почве в очень значительном количестве. Внесение кальциевых удобрений не составляет больших затруднений, ибо известковые мергеля имеются в исключительном изобилии. Иначе обстоит дело с калием и фосфором. В этом отношении питательные запасы почвы должны быть пополнены удобрительными солями. Оба эти элемента содержатся и в «патентном удобрении» Либиха.
Одна английская фирма взялась за производство этого удобрения в больших масштабах. Однако на полях, удобренных этими солями, не было отмечено существенного повышения урожая. Неужели минеральные соли все же не влияют никак на рост растений, неужели его учение ошибочно? Это были тяжелые времена, которые должны были пережить Либих и его сторонники.
Много лет прошло, прежде чем Либих понял причину неуспеха своего удобрения. При производстве «патентного удобрения» он добивался переведения своих калийных и фосфорных удобрений в форму нерастворимых в воде соединений. Таким образом, Либих хотел избежать того, чтобы его удобрительные соли уже при первом же дожде вымывались из почвы в более глубокие ее слои. Но превращая эти соли в нерастворимые в воде соединения, он лишь добился того, что они стали неусвояемыми для растений, так как растения могут поглощать только растворенные соли. Благодаря этому все удобрения оказались введенными напрасно. Поняв причину отрицательных результатов внесения таких удобрений, ученый исправил ошибку.
Либиху пришлось также признать, что он ошибался, предполагая, что содержание газообразного аммиака в воздухе достаточно для роста растений. Калий, фосфор, азот и известь — вот что должна отныне гласить формула, от которой зависит повышение плодородия почвы.
Еще при своей жизни Либих имел возможность с удовлетворением установить, что его учение об удобрительных солях получило всеобщее признание. Все больше и больше утверждалось убеждение в необходимости вносить в пашню искусственные удобрения. Опыты с несомненностью показывали, что удобренные пашни приносят значительно лучшие урожаи.
основы мироздания
91
Роберт Юлий Майер
ЗАКОН СОХРАНЕНИЯ ЭНЕРГИИ
Важнейшим достижением естествознания является установление закона сохранения энергии. Значение этого закона выходит далеко за рамки частного физического закона. Вместо с законом сохранения масс этот закон образует краеугольный камень научного материалистического мировоззрения, выражая факт неуничтожаемости материи и движения. Собственно, философские предпосылки для такого утверждения уже имелись налицо. Они были и у античных философов, особенно атомистов, и у Декарта, и особенно конкретно и отчетливо просматривались у Ломоносова.
В 1807 году член Парижской Академии наук французский физик и химик Жозеф Луи Гей-Люссак, изучая свойства газов, поставил опыт. До этого уже было известно, что сжатый газ, расширяясь, охлаждается. Ученый предположил, что это может происходить потому, что теплоемкость газа зависит от его объема. Он решил проверить это. Гей-Люссак заставил газ расширяться из сосуда в пустоту, т.е. другой сосуд, из которого был предварительно откачан воздух.
К удивлению всех ученых, наблюдавших за опытом, никакого понижения температуры не произошло, температура всего газа не изменилась. Полученный результат не оправдал предположения ученого, и он не понял смысла опыта. Гей-Люссак сделал крупное открытие и не смог его заметить.
Очень важную роль в развитии учения о превратимости сил природы сыграли исследования русского ученого Эмиля Христиановича Ленца, примыкающие в этом отношении к исследованиям Фарадея. Его замечательные работы по электричеству имеют явную энергетическую направленность и существенным образом содействовали укреплению закона. Поэтому с полным правом Ленц занимает одно из первых мест в плеяде творцов и укрепителей закона сохранения энергии.
Первым точно сформулировал этот великий закон естествознания немецкий врач Роберт Майер.
Роберт Юлий Майер (1814—1878) родился в Гейльбронне в семье аптекаря. По окончании средней школы Майер поступил в Тюбинген-ский университет на медицинский факультет. Здесь он не слушал математических и физических курсов, но зато основательно изучил химию у Гмелина. Закончить университет в Тюбингене без перерыва ему не удалось. За участие в запрещенной сходке он был арестован. В тюрьме Майер объявил голодовку и на шестой день после ареста был освобож-
ден под домашний арест. Из Тюбингена Майер уехал в Мюнхен, затем в Вену. Наконец, в январе 1838 года ему разрешили вернуться на родину. Здесь он сдал экзамены и защитил диссертацию.
Вскоре Майер принял решение поступить на голландский корабль, отправляющийся в Индонезию, в качестве судового врача. Это путешествие сыграло важную роль в его открытии. Работая в тропиках, он заметил, что цвет венозной крови у жителей жаркого климата более яркий и алый, чем темный цвет крови у жителей холодной Европы. Майер правильно объяснил яркость крови у жителей тропиков: вследствие высокой температуры организму приходится вырабатывать меньше теплоты. Ведь в жарком климате люди никогда не мерзнут. Поэтому в жарких странах артериальная кровь меньше окисляется и остается почти такой же алой, когда переходит в вены.
У Майера возникло предположение: не изменится ли количество теплоты, выделяемое организмом, при окислении одного и того же количества пищи, если организм, помимо выделения теплоты, будет еще производить работу? Если количество теплоты не изменяется, то из одного и того же количества пищи можно получить то больше, то меньше тепла, так как работу можно превратить в тепло, например, путем трения.
Если количество теплоты изменяется, то работа и теплота обязаны своим происхождением одному и тому же источнику — окисленной в организме пище. Ведь работа и теплота могут превращаться одна в другую. Эта идея сразу дала возможность Майеру сделать ясным и загадочный опыт Гей-Люссака.
Если теплота и работа взаимно превращаются, то при расширении газов в пустоту, когда он не производит никакой работы, так как нет никакой силы давления, противодействующей увеличению его объема, газ и не должен охлаждаться. Если же при расширении газа ему приходится производить работу против внешнего давления, то его температура должна понижаться. Но если теплота и работа могут превращаться друг в друга, если эти физические величины сходные, то возникает вопрос о соотношении между ними.
Майер попытался узнать: сколько требуется работы для выделения определенного количества теплоты и наоборот? К тому времени было известно, что для нагревания газа при постоянном давлении, когда газ расширяется, нужно больше тепла, чем для нагревания газа в замкнутом сосуде. То есть что теплоемкость газа при постоянном давлении больше, чем при постоянном объеме. Эти величины были уже хорошо известны. Но установлено, что обе они зависят от природы газа: разность между ними почти одинакова для всех газов.
Майер понял, что эта разность в теплоте обусловлена тем, что газ, расширяясь, совершает работу. Работу одного моля расширяющегося газа при нагревании на один градус определить нетрудно. Любой газ при малой плотности можно считать идеальным — его уравнение состояния
92
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
было известно. Если нагреть газ на один градус, то при постоянном давлении его объем возрастет на некую величину.
Таким образом, Майер нашел, что для любого газа разность теплоемкости газа при постоянном давлении и теплоемкости газа при постоянном объеме есть величина, называемая газовая постоянная. Она зависит от молярной массы и температуры. Теперь это уравнение носит его имя.
Одновременно с Майером и независимо от него закон сохранения и превращения энергии разрабатывался Джоулем и Гельмгольцем.
Механический подход Гельмгольца, который он сам был вынужден признать узким, дал возможность установить абсолютную меру для «живой силы» и рассматривать всевозможные формы энергии либо в виде кинетической («живых сил»), либо потенциальной («сил напряжения»).
Количество превращенной формы движения можно измерить величиной той механической работы, например, по поднятию груза, которую можно было бы получить, если целиком все исчезнувшее движение затратить на это поднятие. Экспериментальное обоснование принципа и заключается, прежде всего, в доказательстве количественной определенности этой работы. Этой задаче и были посвящены классические опыты Джоуля.
Джемс Прескот Джоуль (1818—1889) — манчестерский пивовар — начал с изобретения электромагнитных аппаратов. Эти приборы и явления, с ними связанные, стали конкретным ярким проявлением пре-вратимости физических сил. В первую очередь Джоуль исследовал законы выделения тепла электрическим током. Так как опыты с гальваническими источниками (1841) не давали возможности установить, является ли теплота, развиваемая током в проводнике, только перенесенной теплотой химических реакций в батарее, то Джоуль решил поставить эксперимент с индукционным током.
Он поместил в замкнутый сосуд с водой катушку с железным сердечником, концы обмотки катушки присоединялись к чувствительному гальванометру. Катушка приводилась во вращение между полюсами сильного электромагнита, по обмотке которого пропускался ток от батареи. Число оборотов катушки достигало 600 в минуту, при этом попеременно четверть часа обмотка электромагнита была замкнута, четверть разомкнута. Тепло, которое выделялось вследствие трения, во втором случае вычиталось из тепла, выделяемого в первом случае. Джоуль установил, что количество тепла, выделяемое индукционными токами, пропорционально квадрату силы тока. Так как в данном случае токи возникали вследствие механического движения, то Джоуль пришел к выводу, что тепло можно создавать с помощью механических сил.
Далее Джоуль, заменив вращение рукой вращением, производимым падающим грузом, установил, что «количество теплоты, которое в состоянии нагреть 1 фунт воды на 1 градус, равно и может быть превращено в механическую силу, которая в состоянии поднять 838 фунтов
основы мироздания
93
на вертикальную высоту в 1 фут». Эти результаты и были им сведены в работе «О тепловом эффекте магнитоэлектричества и механическом значении тепла», доложенной на физико-математической секции Британской ассоциации 21 августа 1843 года.
Наконец, в работах 1847—1850 годов Джоуль разрабатывает свой главный метод, вошедший в учебники физики. Он дает наиболее совершенное определение механического эквивалента тепла. Металлический калориметр устанавливался на деревянной скамейке. Внутри калориметра проходит ось, несущая лопасти или крылья. Крылья эти расположены в вертикальных плоскостях, образующих угол 45 градусов друг с другом (восемь рядов). К боковым стенкам в радиальном направлении прикреплены четыре ряда пластинок, не препятствующие вращению лопастей, но препятствующие движению всей массы воды. В целях тепловой изоляции металлическая ось разделена на две части деревянным цилиндром. На внешнем конце оси имеется деревянный цилиндр, на который наматываются две веревки в одинаковом направлении, покидающие поверхность цилиндра в противоположных точках. Концы веревок прикреплены к неподвижным блокам, оси которых лежат на легких колесиках. На оси намотаны веревки, несущие грузы. Высота падения грузов отсчитывается по рейкам.
Далее Джоуль определял эквивалент, измеряя теплоту, выделяемую при трении чугуна о чугун. На оси в калориметре вращалась чугунная пластинка. Вдоль оси свободно скользят кольца, несущие рамку, трубку и диск, по форме пригнанный к чугунной пластинке. С помощью стержня и рычага можно произвести давление и прижать диск к пластинке. Последние измерения механического эквивалента Джоуль производил уже в 1878 году.
Расчеты Майера и опыты Джоуля завершили двухсотлетний спор о природе теплоты. Доказанный на опыте принцип эквивалентности между теплотой и работой можно сформулировать следующим образом: во всех случаях, когда из теплоты появляется работа, тратится количество тепла, равное полученной работе, и наоборот, при затрате работы получается то же количество тепла. Этот вывод был назван Первым законом термодинамики.
Согласно этому закону, работу можно превратить в тепло и наоборот — теплоту в работу. Причем обе эти величины равны друг другу. Вывод этот справедлив для термодинамического цикла, в котором система должна быть приведена к исходным условиям. Таким образом, для любого кругового процесса совершенная системой работа равна полученной системой теплоте.
Открытие Первого закона термодинамики доказало невозможность изобретения вечного двигателя. Закон сохранения энергии поначалу так и называли — «вечный двигатель невозможен».
ЭЛЕКТРОМАГНИТНАЯ ТЕОРИЯ СВЕТА
«В свое время Ньютон был убежден в том, что свет состоит из мельчайших частичек, скорость перемещения которых практически бесконечна, — говорит Т.Редже в предыстории вопроса. — Его современник Гюйгенс, напротив, был сторонником волнового механизма распространения света, подобного процессу распространения звука в
воздухе или в любой материальной среде. Непререкаемый авторитет Ньютона не допустил признания гипотезы Гюйгенса.
В 1700 году Юнг, Френель и некоторые другие ученые приступили к исследованию оптических явлений, непонятных с точки зрения представлений Ньютона. Эти явления прямо указывали на волновую природу света. Как ни парадоксально, но среди этих явлений были и кольца Ньютона, хорошо известные фотографам и возникающие, когда диапозитив помещается между стеклянными пластинами. Яркая окраска некоторых насекомых также возникает в результате сложных процессов интерференции световых волн, происходящих в тонких слоях жидких кристаллов, расположенных на поверхности тела насекомых».
Однако, несмотря на очевидные успехи волновой механической теории света во второй половине XIX века, она была подвергнута сомнению по двум причинам. Одна — опыты Фарадея, открывшего действие магнитного поля на свет. Другая — исследования связи между электрическими и магнитными явлениями, которые проводил Максвелл. «Открытие электромагнитной природы света является великолепной иллюстрацией диалектики развития содержания и формы, — пишет П.С. Кудрявцев. — Новое содержание — электромагнитные волны — было выражено в старой форме картезианских вихрей.
Несоответствие нового содержания, появившегося в результате развития электромагнетизма, не только старой форме теории дальнодействия, но и механической теории эфира ощущал уже Фарадей, искавший для выражения этого содержания новую форму. Такую форму он усматривал в силовых линиях, которые следовало рассматривать не статически, а динамически. Развитию этой мысли посвящены его работы «Мысли о лучевых вибрациях» (1846) и «О физических линиях магнитной силы» (1851).
Открытие Фарадеем в 1845 году связи между магнетизмом и светом явилось новым содержанием в учении о свете и вместе с тем еще раз
основы мироздания
95
указывало на строгую поперечность световых колебаний. Все это плохо укладывалось в старую форму механического эфира». Фарадей выдвигает идею силовых линий, в которых происходят поперечные колебания. «Нельзя ли, — пишет он, — предположить, что колебания, которые в известной теории (волновой теории света. — Прим. авт.) принимаются за основу излучения и связанных с ним явлений, происходят в линиях сил, соединяющих частицы, а следовательно, массы материи в одно целое. Эта идея, если ее допустить, освободит нас от эфира, являющегося с другой точки зрения той средой, в которой происходят эти колебания».
Ученый указывает, что колебания, происходящие в линиях сил, представляют собой не механический процесс, а новую форму движения, «некий высший тип колебания». Подобные колебания поперечны и потому могут «объяснить чудесные разнообразные явления поляризации». Они не похожи на продольные звуковые волны в жидкостях и газах. Его теория, как он говорит, «пытается устранить эфир, но не колебания». Эти магнитные колебания распространяются с конечной скоростью:
«...Появление изменения в одном конце силы заставляет предполагать последующее изменение на другом. Распространение света, а потому, вероятно, всех лучистых действий, требует времени, и чтобы колебание линий силы могло объяснить явления излучения, необходимо, чтобы такое колебание также занимало время».
Поиски новой формы привели ученого к становлению важной идеи поперечных магнитных колебаний, распространяющихся, как и свет, с конечной скоростью. Но это и есть центральная идея электромагнитной теории света — мысль, возникшая еще в 1832 году.
Максвелл отмечал в записке к В.Бреггу: «Электромагнитная теория света, предложенная им (Фарадеем) в «Мыслях о лучевых вибрациях» (май, 1846) или «Экспериментальных исследованиях», — это по существу то же, что я начал развивать в этой статье («Динамическая теория поля» (май, 1865), за исключением того, что в 1846 году не было данных для вычисления скорости распространения».
Подобное признание, однако, не принижает заслуг в исследовании электромагнитного поля Джеймса Максвелла.
Джеймс Максвелл (1831—1879) родился в Эдинбурге. Вскоре после рождения мальчика родители увезли его в свое имение Гленлэр. Сначала приглашали учителей на дом. Потом решено было отдать Джеймса в новую школу, носившую громкое название Эдинбургской академии.
Максвелл окончил академию одним из первых, и перед ним распахнулись двери Эдинбургского университета.
Будучи студентом, Максвелл выполнил серьезное исследование по теории упругости, получившее высокую оценку специалистов. И теперь перед ним встал вопрос о перспективе его дальнейшей учебы в Кембридже. Объем знаний Максвелла, мощь его интеллекта и самостоя-
96
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
тельность мышления позволили ему добиться высокого места в своем выпуске. Он и занял второе место.
Молодой бакалавр был оставлен в Кембридже — Тринити-колледже в качестве преподавателя. Однако его волновали научные проблемы. Помимо его старого увлечения — геометрии и проблемы цветов, которой он начал заниматься еще в 1852 году, Максвелл заинтересовался электричеством.
20 февраля 1854 года Максвелл сообщает Томсону о своем намерении «атаковать электричество». Результат «атаки» — сочинение «О Фарадеевых силовых линиях» — первое из трех основных трудов Максвелла, посвященных изучению электромагнитного поля. Слово «поле» впервые появилось в том самом письме Томсону, но ни в этом, ни в последующем сочинении, посвященном силовым линиям, Максвелл его не употребляет. Это понятие снова появится только в 1864 году в работе «Динамическая теория электромагнитного поля».
Он публикует две основные работы по созданной им теории электромагнитного поля: «О физических силовых линиях» (1861—1862 годы) и «Динамическая теория электромагнитного поля» (1864—1865 годы). За десять лет Максвелл вырос в крупнейшего ученого, творца фундаментальной теории электромагнитных явлений, ставшей, наряду с механикой, термодинамикой и статистической физикой, одним из устоев классической теоретической физики.
«Трактат по электричеству и магнетизму» — главный труд Максвелла и вершина его научного творчества. В нем он подвел итоги многолетней работы по электромагнетизму, начавшейся еще в начале 1854 года. Предисловие к «Трактату» датировано 1 февраля 1873 года. Девятнадцать лет работал Максвелл над своим основополагающим трудом!
Исследования, произведенные Максвеллом, привели его к выводу, что в природе должны существовать электромагнитные волны, скорость распространения которых в безвоздушном пространстве равна скорости света — 300 000 километров в секунду.
Возникнув, электромагнитное поле распространяется в пространстве со скоростью света, занимая все больший и больший объем. Максвелл утверждал, что волны света имеют ту же природу, что и волны, возникающие вокруг провода, в котором есть переменный электрический ток. Они отличаются друг от друга только длиной. Очень короткие волны и есть видимый свет.
«Предположение Максвелла о том, что изменения электрического поля влекут за собой возникновение потока магнитной индукции, явилось следующим шагом вперед, — пишет А.А. Коробко-Стефанов. — Таким образом, возникшее переменное электрическое поле вокруг магнитного, в свою очередь, создает переменное магнитное поле, охватывающее электрическое, которое вновь возбуждает электрическое, и т. д.
Быстропеременные электрические и магнитные поля, распространяющиеся со скоростью света, образуют электромагнитное поле. Элек-
основы мироздания
97
тромагнитное поле распространяется в пространстве от точки к точке, создавая электромагнитные волны. Электромагнитное поле в каждой точке характеризуется напряженностью электрического и магнитного полей. Напряженность электрического и магнитного полей — величины векторные, так как характеризуются не только величиной, но и направлением. Векторы напряженности полей взаимно перпендикулярны и перпендикулярны к направлению распространения».
Поэтому электромагнитная волна является поперечной.
Из теории Максвелла вытекало, что электромагнитные волны возникают в том случае, если изменения напряженности электрического и магнитного полей будут происходить очень быстро.
Справедливость максвелловских представлений опытным путем доказал Генрих Герц. В восьмидесятые годы девятнадцатого века Герц приступил к изучению электромагнитных явлений, работая в аудитории длиной 14 метров и шириной 12 метров. Он обнаружил, что если расстояние приемника от вибратора менее одного метра, то характер распределения электрической силы аналогичен полю диполя и убывает обратно пропорционально кубу расстояния. Однако на расстояниях, превышающих 3 метра, поле убывает значительно медленнее и неодинаково в различных направлениях. В направлении оси вибратора действие убывает значительно быстрее, чем в направлении, перпендикулярном оси, и едва заметно на расстоянии 4 метров, тогда как в перпендикулярном направлении оно достигает расстояний, больших 12 метров.
Этот результат противоречит всем законам теории дальнодействия. Герц продолжал исследование в волновой зоне своего вибратора, поле которого он позже рассчитал теоретически. В ряде последующих работ Герц неопровержимо доказал существование электромагнитных волн, распространяющихся с конечной скоростью. «Результаты опытов, поставленных мною над быстрыми электрическими колебаниями, — писал Герц в своей восьмой статье 1888 года, — показали мне, что теория Максвелла обладает преимуществом перед всеми другими теориями электродинамики».
Поле в этой волновой зоне в различные моменты времени Герц изобразил с помощью картины силовых линий. Эти рисунки Герца вошли во все учебники электричества. Расчеты Герца легли в основу теории излучения антенн и классической теории излучения атомов и молекул.
Таким образом, Герц в процессе своих исследований окончательно и безоговорочно перешел на точку зрения Максвелла, придал удобную форму его уравнениям, дополнил теорию Максвелла теорией электромагнитного излучения. Герц получил экспериментально электромагнитные волны, предсказанные теорией Максвелла, и показал их тождество с волнами света.
В 1889 году Герц прочитал доклад «О соотношении между светом и электричеством» на 62-м съезде немецких естествоиспытателей и врачей.
98
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
Здесь он подводит итоги своих опытов в следующих словах: «Все эти опыты очень просты в принципе, но, тем не менее, они влекут за собой важнейшие следствия. Они рушат всякую теорию, которая считает, что электрические силы перепрыгивают пространство мгновенно. Они означают блестящую победу теории Максвелла... Насколько маловероятным казалось ранее ее воззрение на сущность света, настолько трудно теперь не разделить это воззрение».
В 1890 году Герц опубликовал две статьи: «Об основных уравнениях электродинамики в покоящихся телах» и «Об основных уравнениях электродинамики для движущихся тел». Эти статьи содержали исследования о распространении «лучей электрической силы» и, в сущности, давали то каноническое изложение максвелловской теории электрического поля, которое вошло с тех пор в учебники.
ЗАКОН ДЕЙСТВУЮЩИХ МАСС
В научную и учебную литературу закон действующих масс входит как один из основных законов химии. То, что процесс химического взаимодействия зависит от количества действующих масс, подтверждали факты, поступавшие как из области органической, так и неорганической химии. Г. Розе (1851), Р. Бунзен (1853), Д Глэдстон (1855) дали материал для доказательства существования обратимых химических превращений и возможности изменения направления реакции путем подбора соответствующих условий ее протекания. Французский химик Сент-Клер Девиль (1818—1881) в 1857 году доказал, что разложение химических соединений может начинаться и ниже температуры их полного разложения.
Ко времени этого открытия Анри Этьен Сент-Клер Девиль был уже профессором Высшей Нормальной школы в Париже. В 1861 году он становится членом Парижской Академии наук. Именно Сент-Клер Девиль разработал первый промышленный способ получения алюминия (1854). Французский ученый предложил и новый метод плавки и очистки платины. Он же произвел синтез различных минералов. Интересно, что в 1869 году Сент-Клер Девиля избрали членом-корреспондентом Петербургской Академии наук.
Итак, в статье 1857 года «О диссоциации, или самопроизвольном разложении веществ под влиянием тепла» (1857) Сент-Клер Девиль показал, что под влиянием температуры происходит разложение водяного пара на кислород и водород при температуре плавления платины (1750 °С) и при температуре плавления серебра (950 °С).
Позднее в лекциях о диссоциации, прочитанных в 1864 году перед Французским химическим обществом, Сент-Клер Девиль формулирует конечный вывод своих экспериментов: «Превращение водяных паров в смесь водорода и кислорода есть полная перемена состояния, соответствующая определенной температуре, и эта температура является постоянной при переходе из одного состояния в другое, в каком бы направлении эти перемены ни происходили». Это «явление самопроизвольного разложения воды я предлагаю назвать диссоциацией».
100
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
Надо отметить, что такое определение охватывало лишь случаи, «в которых разложение имеет место частично и при температуре более низкой, чем температура, которая соответствует абсолютному разрушению соединения».
Французский ученый показал: некоторые соединения, даже самые устойчивые, легко диссоциируют при высоких температурах (1200-1500 °С). Устанавливаемым при этом химическим равновесием можно управлять, изменяя температуру и давление.

<< Предыдущая

стр. 3
(из 16 стр.)

ОГЛАВЛЕНИЕ

Следующая >>