<< Предыдущая

стр. 8
(из 16 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

Шестнадцати лет Паскаль написал весьма примечательный трактат о конических сечениях. Однако усиленные занятия вскоре подорвали и без того слабое здоровье Паскаля. В восемнадцать лет он уже постоянно жаловался на головную боль, на что первоначально не обращали особого внимания. Но окончательно расстроилось здоровье Паскаля во время чрезмерных работ над изобретенной им арифметической машиной.
Придуманная Паскалем машина была довольно сложна по устройству, и вычисление с ее помощью требовало значительного навыка. Этим и объясняется, почему она осталась механической диковинкой, возбуждавшей удивление современников, но не вошедшей в практическое употребление.
Со времени изобретения Паскалем арифметической машины имя его стало известным не только во Франции, но и за ее пределами.
В 1643 году Торричелли предпринял опыты по подъему различных жидкостей в трубках и насосах. Торричелли вывел, что причиною подъема, как воды, так и ртути, является вес столба воздуха, давящего на открытую поверхность жидкости.
Эти эксперименты заинтересовали Паскаля. Зная, что воздух имеет вес, он решает объяснить явления, наблюдаемые в насосах и в трубках,; действием этого веса. Главная трудность, однако, состояла в том, чтобы | объяснить способ передачи давления воздуха. Блез рассуждал так: если : давление воздуха действительно служит причиной рассматриваемых явлений, то из этого следует, что чем меньше или ниже, при прочих равных условиях, столб воздуха, давящий на ртуть, тем ниже будет столб ртути в барометрической трубке.
В результате эксперимента Паскаль показал, что давление жидкости распространяется во все стороны равномерно и что из этого свойства
жидкостей вытекают почти все остальные их механические свойства. Далее ученый нашел, что и давление воздуха по способу своего распространения совершенно подобно давлению воды.
В области математики Паскаль в первую очередь известен своим вкладом в теорию вероятностей. Как выразился Пуассон, «задача, относившаяся к азартным играм и поставленная перед суровым янсени-стом светским человеком, была источником теории вероятностей». Этим светским человеком был кавалер де Мере, а «суровым янсенистом» — Паскаль. Считается, что де Мере был азартнейшим игроком. На самом деле он серьезно интересовался наукой.
Как бы там ни было, де Мере задал Паскалю следующий вопрос: каким образом разделить старку между игроками в случае, если игра не была окончена? Решение этой задачи совершенно не поддавалось всем известным до того времени математическим методам.
Здесь предстояло решить вопрос, не зная, который из игроков мог бы выиграть в случае продолжения игры? Ясно, что речь шла о задаче, которую надо было решить на основании степени вероятности выигрыша или проигрыша того или другого игрока. Но до тех пор ни одному математику еще не приходило в голову вычислять события только вероятные. Казалось, что задача допускает лишь гадательное решение, то есть что делить ставку надо совершенно наудачу, например, метанием жребия, определяющего, за кем должен остаться окончательный выигрыш.
Необходим был гений Паскаля и Ферма, чтобы понять, что такого рода задачи допускают вполне определенные решения и что «вероятность» есть величина, доступная измерению. Допустим, требуется узнать, как велика вероятность вынуть белый шар из урны, содержащей два белых шара и один черный. Всех шаров три, и белых шаров вдвое больше, чем черных. Ясно, что правдоподобнее предположить при доставании наудачу, что будет вытянут белый шар, нежели черный. Может как раз случиться, что мы вынем черный шар; но все же мы вправе сказать, что вероятность этого события меньше, чем вероятность вынуть белый. Увеличивая число белых шаров и оставляя один черный, легко видеть, что вероятность вынуть черный шар будет уменьшаться. Так, если бы белых шаров было тысяча, а черных — один и если бы кому-либо предложили побиться об заклад, что будет вынут черный шар, а не белый, то только сумасшедший или азартный игрок решился бы поставить на карту значительную сумму в пользу черного шара.
Уяснив себе понятие об измерении вероятности, легко понять, каким образом Паскаль решил задачу, предложенную де Мере. Очевидно, что Для вычисления вероятности надо узнать отношение между числом случаев благоприятных событию и числом всех возможных случаев (как благоприятных, так и неблагоприятных). Полученное отношение и есть искомая вероятность. Так, если белых шаров сто, а черных, положим, десять,
228
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
то всех «случаев» будет сто десять, из них десять в пользу черных шаров. Поэтому вероятность вынуть черный шар будет 10 к ПО, или 1 к 11.
Две задачи, предложенные кавалером де Мере, сводятся к следующему. Первая: как узнать, сколько раз надо метать две кости в надежде получить наибольшее число очков, то есть двенадцать; другая: как распределить выигрыш между двумя игроками в случае неоконченной партии. Первая задача сравнительно легка: надо определить, сколько может быть различных сочетаний очков; лишь одно из этих сочетаний благоприятно событию, все остальные неблагоприятны, и вероятность вычисляется очень просто. Вторая задача значительно труднее. Обе были решены одновременно в Тулузе математиком Ферма и в Париже Паскалем. По этому поводу в 1654 году между Паскалем и Ферма завязалась переписка, и, не будучи знакомы лично, они стали лучшими друзьями. Ферма решил обе задачи посредством придуманной им теории сочетаний. Решение Паскаля было значительно проще: он исходил из чисто арифметических соображений. Нимало не завидуя Ферма, Паскаль, наоборот, радовался совпадению результатов и писал: «С этих пор я желал бы раскрыть перед вами свою душу, так я рад тому, что наши мысли встретились. Я вижу, что истина одна и та же в Тулузе и в Париже».
Вот краткое решение Паскаля. Предположим, говорит Паскаль, что играют два игрока и что выигрыш считается окончательным после победы одного из них в трех партиях. Предположим, что ставка каждого игрока составляет 32 червонца и что первый уже выиграл две партии (ему не хватает одной), а второй выиграл одну (ему не хватает двух). Им предстоит сыграть еще партию. Если ее выиграет первый, он получит всю сумму, то есть 64 червонца; если второй, у каждого будет по две победы, шансы обоих станут равны, и в случае прекращения игры каждому, очевидно, надо дать поровну.
Итак, если выиграет первый, он получит 64 червонца. Если выиграет второй, то первый получит лишь 32. Поэтому, если оба согласны не играть предстоящей партии, то первый вправе сказать: 32 червонца я получу во всяком случае, даже если я проиграю предстоящую партию, которую мы согласились признать последней. Стало быть, 32 червонца мои. Что касается остальных 32 — может быть, их выиграю я, может быть, и вы; поэтому разделим эту сомнительную сумму пополам. Итак, если игроки разойдутся, не сыграв последней партии, то первому надо дать 48 червонцев, или же s, всей суммы, второму 16 червонцев, или], из чего видно, что шансы первого из них на выигрыш втрое больше, чем второго (а не вдвое, как можно было бы подумать при поверхностном рассуждении).
Несколько позднее Паскаля и Ферма к теории вероятностей обратился Хейнгенс Христиан Гюйгенс (1629—1695). До него дошли сведения об их успехах в новой области математики. Гюйгенс пишет работу «О расчетах в азартной игре». Она впервые вышла в виде приложения к «Математическим этюдам» его учителя Схоотена в 1657 году. До начала
МОГУЩЕСТВЕННАЯ МАТЕМАТИКА
229
Г
восемнадцатого века «Этюды...» оставались единственным руководством по теории вероятностей и оказали большое влияние на многих математиков.
В письме Схоотену Гюйгенс заметил: «Я полагаю, что при внимательном изучении предмета читатель заметит, что имеет дело не только с игрой, но что здесь закладываются основы очень интересной и глубокой теории». Подобное высказывание говорит о том, что Гюйгенс глубоко понимал существо рассматриваемого предмета.
Именно Гюйгенс ввел понятие математического ожидания и приложил его к решению задачи о разделении ставки при разном числе игроков и разном количестве недостающих партий и к задачам, связанным с бросанием игральных костей. Математическое ожидание стало первым основным теоретико-вероятностным понятием.
В XVII веке появляются первые работы по статистике. Они посвящены, главным образом, подсчету распределения рождений мальчиков и девочек, смертности людей различных возрастов, необходимого количества людей разных профессий, величины налогов, народного богатства, доходов. При этом применялись методы, связанные с теорией вероятностей. Подобные работы способствовали ее развитию.
Галлей при составлении таблицы смертности в 1694 году осреднял данные наблюдений по возрастным группам. По его мнению, имеющиеся отклонения «видимо, вызваны случаем», что данные не имели бы резких отклонений при «намного большем» числе лет наблюдений.
Теория вероятностей имеет огромное применение в самых различных областях. Посредством нее астрономы, например, определяют вероятные ошибки наблюдений, а артиллеристы вычисляют вероятное количество снарядов, могущих упасть в определенном районе, а страховые общества — размер премий и процентов, уплачиваемых при страховании жизни и имущества.
А во второй половине девятнадцатого столетия зародилась так называемая «статистическая физика», представляющая собой область физики, специально изучающей огромные совокупности атомов и молекул, составляющие любое вещество, с точки зрения вероятностей.
Готфрид Вильгельм Лейбниц
ДИФФЕРЕНЦИАЛЬНОЕ И ИНТЕГРАЛЬНОЕ СЧИСЛЕНИЕ
Задолго до Ньютона и Лейбница многие философы и математики занимались вопросом о бесконечно малых, но ограничились лишь самыми элементарными выводами. Еще древние греки употребляли в геометрических исследованиях способ пределов, посредством которого вычисляли, например, площадь круга. Особенное развитие дал этому способу величайший математик древности Архимед, открывший с его помощью множество замечательных теорем. Кеплер и в этом отношении ближе всех подошел к открытию Ньютона. По случаю чисто житейского спора между покупщиком и продавцом из-за нескольких кружек вина Кеплер занялся геометрическим определением емкости бочкообразных тел. В этих исследованиях видно уже весьма отчетливое представление о бесконечно малых. Так, Кеплер рассматривал площадь круга как сумму бесчисленных весьма малых треугольников или, точнее, как предел такой суммы. Позднее тем же вопросом занялся итальянский математик Кавальери. В особенности много сделали в этой области французские математики XVII века Роберваль, Ферма и Паскаль. Но только Ньютон и несколько позднее Лейбниц создали настоящий метод, давший огромный толчок всем отраслям математических наук.
По замечанию Огюста Конта, дифференциальное исчисление, или анализ бесконечно малых величин, есть мост, перекинутый между конечным и бесконечным, между, человеком и природой: глубокое познание законов природы невозможно при помощи одного грубого анализа конечных величин, потому что в природе на каждом шагу — бесконечное, непрерывное, изменяющееся.
Ньютон создал свой метод, опираясь на прежние открытия, сделанные им в области анализа, но в самом главном вопросе он обратился к помощи геометрии и механики.
Когда именно Ньютон открыл свой новый метод, в точности неизвестно. По тесной связи этого способа с теорией тяготения следует думать, что он был выработан Ньютоном между 1666 и 1669 годами и во всяком случае раньше первых открытий, сделанных в этой области Лейбницем. «Математику Ньютон считал основным инструментом физических исследований, — отмечает В.А. Никифоровский, — и разрабатывал ее для
Г
МОГУЩЕСТВЕННАЯ МАТЕМАТИКА
231
многочисленных дальнейших приложений. После длительных размышлений он пришел к исчислению бесконечно малых на основе концепции движения; математика для него не выступала как абстрактный продукт человеческого ума. Он считал, что геометрические образы — линии, поверхности, тела — получаются в результате движения: линия — при движении точки, поверхность — при движении линии, тело — при движении поверхности. Эти движения осуществляются во времени, и за сколь угодно малое время точка, например, пройдет сколь угодно малый путь. Для нахождения мгновенной скорости, скорости в данный момент, необходимо найти отношение приращения пути (по современной терминологии) к приращению времени, а затем — предел этого отношения, т. е. взять «последнее отношение», когда приращение времени стремится к нулю. Так Ньютон ввел отыскание «последних отношений», производных, которые он называл флюксиями...
...Использование теоремы о взаимной обратности операций дифференцирования и интегрирования, известной еще Барроу, и знание производных многих функций дало Ньютону возможность получить интегралы (по его терминологии, флюенты). Если интегралы непосредственно не вычислялись, Ньютон разлагал подынтегральную функцию в степенной ряд и интегрировал его почленно. Для разложения функций в ряды он чаще всего пользовался открытым им разложением бинома, применял и элементарные методы...»
Новый математический аппарат был апробирован ученым уже ко времени создания основного труда своей жизни — «Математических начал натуральной философии». В тот период Ньютон свободно владел дифференцированием, интегрированием, разложением в ряд, интегрированием дифференциальных уравнений, интерполированием.
«Свои открытия Ньютон, — продолжает В.А.Никифоровский, — сделал раньше Лейбница, но своевременно не опубликовал их; все его математические сочинения были изданы после того, как он стал знаменитым. Зимой 1664—1665 годов Ньютон нашел вид общего разложения бинома с произвольным показателем степени. В 1666 году он подготовил рукопись «Следующие предложения достаточны, чтобы решать задачи с помощью движения», содержащую основные открытия по математике. Рукопись осталась в черновом варианте и была опубликована только через триста лет.
В «Анализе с помощью уравнений с бесконечным числом членов», написанном в 1665 году, Ньютон изложил свои результаты в учении о бесконечно малых рядах, в приложении рядов к решению уравнений...
...В 1670—1671 годах Ньютон стал готовить к изданию более полную работу — «Метод флюксий и бесконечных рядов». Издателя найти не удалось: в то время книги по математике приносили убыток. ...В «Методе флюксий» учение Ньютона выступает как система: рассматривается исчисление флюксий, приложение их к определению касательных, нахождению экстремумов, кривизны, вычисление квадратур, решение
232
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
уравнений с флюксиями, что соответствует современным дифференциальным уравнениям».
Лишь в 1704 году вышел первый из всех трудов Ньютона по анализу — написанное им в 1665—1666 годах. Еще через семь лет опубликовали «Анализ с помощью уравнений с бесконечным числом членов». «Метод флюксий» увидел свет только после смерти автора в 1736 году.
Долгое время Ньютон и не подозревал, что на континенте успешно занимается подобной проблемой немец Лейбниц До поры до времени высоко ценившие заслуги друг друга, в конце концов, ученые втянулись в полемику о приоритете открытия исчисления бесконечно малых.
Готфрид Вильгельм Лейбниц (1646—1716) родился в Лейпциге. Мать Лейбница, заботясь об образовании сына, отдала его в школу Николаи, считавшуюся в то время лучшей в Лейпциге. Готфрид целыми днями просиживал в отцовской библиотеке. Без разбора читал он Платона, Аристотеля, Цицерона, Декарта
Готфриду не было еще четырнадцати лет, когда он изумил своих школьных учителей, проявив талант, которого в нем никто не подозревал. Он оказался поэтом, — по тогдашним понятиям истинный поэт мог писать только по-латыни или по-гречески.
Пятнадцатилетним юношей Готфрид стал студентом Лейпцигского университета. Официально Лейбниц считался на юридическом факультете, но специальный круг юридических наук далеко не удовлетворял его. Кроме лекций по юриспруденции, он усердно посещал и многие другие, в особенности по философии и математике.
Желая пополнить свое математическое образование, Готфрид отправился в Иену, где славился математик Вейгель. Возвратившись в Лейпциг, Лейбниц блистательно выдержал экзамен на степень магистра «свободных искусств и мировой мудрости», то есть словесности и философии. Готфриду в то время не было и 18 лет. На следующий год, на время обратившись к математике, он пишет «Рассуждение о комбинаторном искусстве».
Осенью 1666 года Лейбниц уехал в Альторф, университетский город маленькой Нюрнбергской республики. Здесь 5 ноября 1666 года Лейбниц блистательно защитил докторскую диссертацию «О запутанных делах».
В 1667 году Готфрид отправился в Майнц к курфюрсту, которому был немедленно представлен. В течение пяти лет Лейбниц занимал видное положение при майнцском дворе Этот период в его жизни был временем оживленной литературной деятельности. Лейбниц написал целый ряд сочинений философского и политического содержания.
18 марта 1672 года Лейбниц выехал во Францию с важной дипломатической миссией. Знакомство с парижскими математиками в самое короткое время доставило Лейбницу те сведения, без которых он, при всей своей гениальности, никогда не смог бы достичь в области математики ничего истинно великого. Школа Ферма, Паскаля и Декар-
1
МОГУЩЕСТВЕННАЯ МАТЕМАТИКА
233
та была необходима будущему изобретателю дифференциального исчисления.
Настоящие занятия математикой начались для Лейбница лишь после посещения Лондона в 1675 году. По возвращении в Париж Лейбниц разделял свое время между занятиями математикой и работами философского характера. Математическое направление все более одерживало в нем верх над юридическим, точные науки привлекали его теперь более, чем диалектика римских юристов.
В последний год своего пребывания в Париже в 1676 году Лейбниц выработал первые основания великого математического метода, известного под названием «дифференциальное исчисление». Факты с достаточной убедительностью доказывают, что Лейбниц хотя и не знал о методе флюксий, но был подведен к открытию письмами Ньютона. С другой стороны, несомненно, что открытие Лейбница по общности, удобству обозначения и подробной разработке метода стало орудием анализа значительно могущественнее и популярнее Ньютонова метода флюксий. Даже соотечественники Ньютона, из национального самолюбия долгое время предпочитавшие метод флюксий, мало-помалу усвоили более удобные обозначения Лейбница; что касается немцев и французов, они даже слишком мало обратили внимания на способ Ньютона, в иных случаях сохранивший значение до настоящего времени.
Математический метод Лейбница находится в теснейшей связи с его позднейшим учением о монадах — бесконечно малых элементах, из которых он пытался построить Вселенную. Математическая аналогия, применение теории наибольших и наименьших величин к нравственной области дали Лейбницу то, что он считал путеводною нитью в нравственной философии.
Политическая деятельность Лейбница в значительной мере отвлекала его от занятий математикой. Тем не менее все свое свободное время он посвятил обработке изобретенного им дифференциального исчисления и в промежуток времени между 1677 и 1684 годами успел создать целую новую отрасль математики.
В 1684 году Лейбниц напечатал в журнале «Труды ученых» систематическое изложение начал дифференциального исчисления. Все опубликованные им трактаты, особенно последний, появившийся почти тремя годами раньше появления в свет первого издания «Начал» Ньютона, дали науке такой огромный толчок, что в настоящее время трудно даже оценить все значение реформы, произведенной Лейбницем в области математики. То, что смутно представлялось умам лучших французских и английских математиков, исключая Ньютона, обладавшего своим методом флюксий, стало вдруг ясным, отчетливым и общедоступным, чего нельзя сказать о гениальном методе Ньютона.
«Лейбниц в противовес конкретному, эмпиричному, осмотрительному Ньютону, — пишет В.П. Карцев, — был в области исчисления
234
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
крупным систематиком, дерзким новатором. Он с юности мечтал создать символический язык, знаки которого отражали бы целые сцепления мыслей, давали бы исчерпывающую характеристику явления. Этот амбициозный и нереальный проект был, конечно, неосуществим; но он, видоизменившись, превратился в универсальную систему обозначений исчисления малых, которой мы пользуемся до сих пор. Он свободно оперирует знаками.., которые он справедливо считает знаками обратных операций, и обращается с ними столь же вольно и свободно, как с алгебраическими символами. Он легко оперирует производными высших порядков, в то время как Ньютон вводит флюксии высшего порядка строго ограниченно, если это необходимо для решения конкретной задачи.
Лейбниц видел в своих дифференциалах и интегралах всеобщий метод, сознательно стремился к созданию жесткого алгоритма упрощенного решения ранее не решавшихся задач.
Ньютон же нисколько не заботился о том, чтобы сделать свой метод общедоступным. Его символика введена им лишь для «внутреннего», личного потребления, он ее строго не придерживался».
Вот мнение советского математика А. Шибанова: «Склоняясь перед непререкаемым авторитетом своего великого соотечественника, английские ученые впоследствии канонизировали каждый штрих, каждую мельчайшую деталь его научной деятельности, даже введенные им для личного употребления математические знаки». «Над английской наукой тяготела традиция почитания Ньютона, и его обозначения, неуклюжие по сравнению с обозначениями Лейбница, затрудняли прогресс», — соглашается голландский ученый Д.Я. Стройк.
В письме, написанном в июне 1677 года, Лейбниц прямо раскрывал Ньютону свой метод дифференциального исчисления. Тот на письмо Лейбница не ответил. Ньютон считал, что открытие принадлежит ему навечно. При этом достаточно того, что оно было запрятано лишь в его голове. Ученый искренне считал: своевременная публикация не приносит никаких прав. Перед Богом первооткрывателем всегда останется тот, кто открыл первым.
Леонард Эйлер
ОСНОВНАЯ ТЕОРЕМА АЛГЕБРЫ
«Основная теорема алгебры в виде утверждения: алгебраическое уравнение имеет столько корней, какова его степень, высказана Жираром и Декартом, — отмечает в своей книге «В мире уравнений» В.А. Никифоровский. — Ее формулировка, состоящая в том, что алгебраический многочлен с действительными коэффициентами раскладывается в произведение действительных линейных и квадратичных множителей, принадлежит Д'Аламберу и Эйлеру. Эйлер впервые сообщил об этом в письме Николаю I Бернулли (1687—1759) от 1 сентября 1742 года. Отсюда следовало, что корни алгебраических уравнений с действительными коэффициентами принадлежат полю комплексных чисел».
Первое доказательство теоремы предпринял в 1746 году Д'Аламбер (1717—1783). Доказательство основной теоремы алгебры, выполненное Д'Аламбером, было, однако, аналитическим, а не алгебраическим. Французский математик воспользовался не оформившимися еще в то время понятиями анализа, такими, как степенной ряд, бесконечно малая. Неудивительно, что доказательство теоремы страдало погрешностями и позднее подверглось разгромной критике Гаусса, а затем было забыто.
Новый и значительный шаг в доказательстве основной теоремы алгебры сделал Эйлер.
Леонард Эйлер (1707—1783) родился в Базеле. По окончании домашнего обучения тринадцатилетний Леонард был отправлен отцом в Базельский университет для слушания философии.
Среди других предметов на этом факультете изучались элементарная математика и астрономия, которые преподавал Иоганн Бернулли. Вскоре Бернулли заметил талантливость юного слушателя и начал заниматься с ним отдельно.
Получив в 1723 году степень магистра, после произнесения речи на латинском языке о философии Декарта и Ньютона, Леонард, по желанию своего отца, приступил к изучению восточных языков и богословия. Но его все больше влекло к математике. Эйлер стал бывать в доме своего учителя, и между ним и сыновьями Иоганна Бернулли — Николаем и Даниилом — возникла дружба, сыгравшая очень большую роль в жизни Леонарда.
В 1725 году братья Бернулли были приглашены в члены Петербургской академии наук. Они способствовали тому, что и Эйлер переехал в Россию.
I
г • ˜-
236
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
1
Открытия Эйлера, которые благодаря его оживленной переписке нередко становились известными задолго до издания, делают его имя все более широко известным. Улучшается его положение в Академии наук в 1727 году он начал работу в звании адъюнкта, то есть младшего по рангу академика, а в 1731 году он стал профессором физики, т. е. действительным членом Академии. В 1733 году получил кафедру высшей математики, которую до него занимал Д Бернулли, возвратившийся в этом году в Базель. Рост авторитета Эйлера нашел своеобразное отражение в письмах к нему его учителя Иоганна Бернулли. В 1728 году Бернулли обращается к «ученейшему и даровитейшему юному мужу Леонарду Эйлеру», в 1737 году — к «знаменитейшему и остроумнейшему математику», а в 1745 году — к «несравненному Леонарду Эйлеру — главе математиков».
В 1736 году появились два тома его аналитической механики. Потребность в этой книге была большая. Немало было написано статей по разным вопросам механики, но хорошего трактата по механике еще не имелось.
В 1738 году появились две части введения в арифметику на немецком языке, в 1739 году — новая теория музыки.
В конце 1740 года власть в России перешла в руки регентши Анны Леопольдовны и ее окружения. В столице сложилась тревожная обстановка. В это время прусский король Фридрих II задумал возродить основанное еще Лейбницем Общество наук в Берлине, долгие годы почти бездействовавшее. Через своего посла в Петербурге король пригласил Эйлера в Берлин. Эйлер, считая, что «положение начало представляться довольно неуверенным», приглашение принял.
В Берлине Эйлер поначалу собрал около себя небольшое ученое общество, а затем был приглашен в состав вновь восстановленной королевской Академии наук и назначен деканом математического отделения. В 1743 году он издал пять своих мемуаров, из них четыре по математике. Один из этих трудов замечателен в двух отношениях. В нем указывается на способ интегрирования рациональных дробей путем разложения их на частные дроби и, кроме того, излагается обычный теперь способ интегрирования линейных обыкновенных уравнений высшего порядка с постоянными коэффициентами.
Вообще большинство работ Эйлера посвящено анализу. Эйлер так упростил и дополнил целые большие отделы анализа бесконечно малых, интегрирования функций, теории рядов, дифференциальных уравнений, начатые уже до него, что они приобрели примерно ту форму, которая за ними в большой мере остается и до сих пор. Эйлер, кроме того, начал целую новую главу анализа — вариационное исчисление. Это его начинание вскоре подхватил Лагранж, и сложилась новая наука.
Доказательство Эйлера основной теоремы алгебры опубликовано в 1751 году в работе «Исследования о воображаемых корнях уравнений».
МОГУЩЕСТВЕННАЯ МАТЕМАТИКА
237
Эйлер выполнил наиболее алгебраическое доказательство теоремы. Позднее его основные идеи повторялись и углублялись другими математиками. Так, методы исследования уравнений получили развитие сначала у Лагранжа, а затем вошли составной частью в теорию Галуа.
Основная теорема состояла в том, что все корни уравнения принадлежат полю комплексных чисел. Для доказательства подобного положения Эйлер установил, что всякий многочлен с действительными коэффициентами можно разложить в произведение действительных линейных или квадратичных множителей.
Значения чисел, не являющиеся действительными, «Эйлер называл воображаемыми, — пишет Никифоровский, — и указывал, что обычно считают их такими, которые попарно в сумме и произведении дают действительные числа Следовательно, если воображаемых корней будет 2 т, то это даст т действительных квадратичных множителей в представлении многочлена. Эйлер пишет. «Поэтому говорят, что каждое уравнение, которое нельзя разложить на действительные простые множители, имеет всегда действительные множители второй степени. Однако никто, насколько я знаю, еще не доказал достаточно строго истинность этого мнения; я постараюсь поэтому дать ему доказательство, которое охватывает все без исключения случаи».
Такой же концепции придерживались Лагранж, Лаплас и некоторые другие последователи Эйлера. Не согласен с ней был Гаусс.
Эйлер сформулировал три теоремы, вытекающие из свойств непрерывных функций.
/. Уравнение нечетной степени имеет по меньшей мере один действительный корень. Если таких корней больше одного, то число их нечетно.
2. Уравнение четной степени либо имеет четное число действительных корней, либо не имеет их совсем.
3. Уравнение четной степени, у которого свободный член отрицательный, имеет по меньшей мере два действительных корня разных знаков.
Вслед за этим Эйлер доказал теоремы о разложимости на линейные и квадратичные действительные множители многочленов с действительными коэффициентами...
При доказательстве основной теоремы Эйлер установил два свойства алгебраических уравнений: 1) рациональная функция корней уравнения, принимающая при всех возможных перестановках корней А различных значений, удовлетворяет уравнению степени А, коэффициенты которого выражаются рационально через коэффициенты данного уравнения; 2) если рациональная функция корней уравнения инвариантна (не меняется) относительно перестановок корней, то она рационально выражается через коэффициенты исходного уравнения».
238
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
П.С. Лаплас в лекциях по математике 1795 года, вслед за Эйлером и Лагранжем, допускает разложение многочлена на множители. При этом Лаплас доказывает, что они будут действительными.
Таким образом, и Эйлер, и Лагранж, и Лаплас строили доказательство основной теоремы алгебры на предположении существования поля разложения многочлена на множители.
Особая роль в доказательствах основной теоремы принадлежит «королю математиков» Гауссу.
Карл Фридрих Гаусс родился (1777—1855) в Брауншвейге. Он унаследовал от родных отца крепкое здоровье, а от родных матери яркий интеллект. В семь лет Карл Фридрих поступил в Екатерининскую народную школу. В 1788 году Гаусс переходит в гимназию. Впрочем, в ней не учат математике. Здесь изучают классические языки. Гаусс с удовольствием занимается языками и делает такие успехи, что даже не знает, кем он хочет стать — математиком или филологом.
О Гауссе узнают при дворе. В 1791 году его представляют Карлу Вильгельму Фердинанду — герцогу Брауншвейгскому. Мальчик бывает во дворце и развлекает придворных искусством счета. Благодаря покровительству герцога Гаусс смог в октябре 1795 года поступить в Геттин-генский университет. Первое время он слушает лекции по филологии и почти не посещает лекций по математике. Но это не означает, что он не занимается математикой.
В 1795 году Гаусса охватывает страстный интерес к целым числам. Осенью того же года Гаусс переезжает в Геттинген и прямо-таки проглатывает впервые попавшуюся в его руки литературу: работы Эйлера и Лагранжа.
«30 марта 1796 года наступает для него день творческого крещения.., — пишет Ф. Клейн, — Гаусс уже занимался с некоторого времени группировкой корней из единицы на основании своей теории «первообразных» корней. И вот однажды утром, проснувшись, он внезапно ясно и отчетливо осознал, что из его теории вытекает построение семнадцатиугольника... Это событие явилось поворотным пунктом жизни Гаусса. Он принимает решение посвятить себя не филологии, а исключительно математике».
Работа Гаусса надолго становится недосягаемым образцом математического открытия. Один из создателей неевклидовой геометрии Янош Бойяи называл его «самым блестящим открытием нашего времени или даже всех времен». Только трудно было это открытие постигнуть! Благодаря письмам на родину великого норвежского математика Абеля, доказавшего неразрешимость в радикалах уравнения пятой степени, мы знаем о трудном пути, который он прошел, изучая теорию Гаусса. В 1825 году Абель пишет из Германии: «Если даже Гаусс — величайший гений, он, очевидно, не стремился, чтобы все это сразу поняли...» Работа Гаусса вдохновляет Абеля на построение теории, в которой «столько замечательных теорем, что просто не верится». Несомненно влияние Гаусса и на Галуа.
МОГУЩЕСТВЕННАЯ МАТЕМАТИКА
239
Сам Гаусс сохранил трогательную любовь к своему первому открытию на всю жизнь.
30 марта 1796 года, в день, когда был построен правильный семнад-цатиугольник, начинается дневник Гаусса — летопись его замечательных открытий. Следующая запись в дневнике появилась уже 8 апреля. В ней сообщалось о доказательстве теоремы квадратичного закона взаимности, которую он назвал «золотой». Частные случаи этого утверждения доказали Ферма, Эйлер, Лагранж. Эйлер сформулировал общую гипотезу, неполное доказательство которой дал Лежандр. 8 апреля Гаусс нашел полное доказательство гипотезы Эйлера. Впрочем, Гаусс еще не знал о работах своих великих предшественников. Весь нелегкий путь к «золотой теореме» он прошел самостоятельно!
Два великих открытия Гаусс сделал на протяжении всего 10 дней, за месяц до того, как ему исполнилось 19 лет! Одна из самых удивительных сторон «феномена Гаусса» заключается в том, что он в своих первых работах практически не опирался на достижения предшественников, переоткрыв за короткий срок то, что было сделано в теории чисел за полтора века трудами крупнейших математиков.
В 1801 году вышли знаменитые «Арифметические исследования» Гаусса. Эта огромная книга (более 500 страниц крупного формата) содержит основные результаты Гаусса. «Арифметические исследования» оказали огромное влияние на дальнейшее развитие теории чисел и алгебры. Законы взаимности до сих пор занимают одно из центральных мест в алгебраической теории чисел.
В Брауншвейге Гаусс не имел возможности знакомиться с литературой, необходимой для работы над «Арифметическими исследованиями». Поэтому он часто ездил в соседний Гельмштадт, где была хорошая библиотека. Здесь в 1798 году Гаусс подготовил диссертацию, посвященную доказательству основной теоремы алгебры.
Гаусс оставил после себя сразу четыре доказательства основной теоремы алгебры. Первому доказательству он посвятил выпущенную в 1799 году докторскую диссертацию под названием «Новое доказательство теоремы о том, что всякая целая рациональная алгебраическая функция одного непременного может быть разложена на действительные множители первой и второй степени».
Гаусс не преминул обратить внимания на пробелы у Эйлера, а главное, подверг критике саму постановку вопроса, когда заранее предполагалось существование корней уравнений.
Первое доказательство Гаусса, как и Д'Аламбера, было аналитическим. Во втором доказательстве, выполненном им в 1815 году, знаменитый математик опять вернулся к критике доказательства основной теоремы алгебры при помощи рассуждения, когда заранее предполагается существование корней уравнения.
Гаусс так пояснил во вводном параграфе необходимость нового доказательства: «Хотя доказательство о разложении целой рациональ-
240
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
ной функции на множители, которое я дал в мемуаре, опубликованном 16 лет тому назад, не оставляет желать лучшего в отношении строгости и простоты, надо надеяться, что математики не будут считать нежелательным, что я вновь возвращаюсь к этому чрезвычайно важному вопросу и предпринимаю построение второго не менее строгого доказательства, исходя из совершенно иных принципов. А именно, это первое доказательство зависело частично от геометрических рассмотрений, тогда как то, которое я здесь начинаю объяснять, покоится на чисто аналитических принципах». Надо заметить, то, что Гаусс называет аналитическим методом, сегодня именуется алгебраическим.
Для доказательства Гаусс использовал построения поля разложения многочлена. Прошло более шестьдесяти лет, когда и Л Кронекер усовершенствовал и развил метод Гаусса для построения поля разложения любого многочлена. Впоследствии Гаусс дал еще два доказательства основной теоремы алгебры. Четвертое и последнее относится к 1848 году.
Главный итог доказательств основной теоремы алгебры Эйлером, Лагранжем и Гауссом, считает И.Г. Башмакова, было то, что «алгебраические доказательства основной теоремы алгебры ценны именно тем, что для их проведения были развиты новые глубокие методы самой алгебры и были испробованы силы уже созданных методов и приемов».
ТЕОРИЯ ГРУПП
Эварист Галуа
Группами перестановок корней занимались ранее других Лагранж и Гаусс. Но бесспорна заслуга того, кто сформулировал существенные свойства понятий, применил их к решению новых и трудных задач. Это сделал французский математик Галуа для понятия группы. Только после его работ оно стало предметом изучения математиков.
Эварист Галуа (1811—1832) родился в городе Бур-ля-Рен. В 1823 году родители отправили Эвариста учиться в Королевский коллеж в Париже. Здесь он увлекся математикой и стал самостоятельно изучать сочинения Лежандра, Эйлера, Лаг-ранжа, Гаусса
Идеи Лагранжа целиком овладевают Галуа. Ему, как когда-то Абелю, кажется, что он нашел решение уравнения пятой степени. Он предпринимает безуспешную попытку поступить в Политехническую школу, но знаний работ Лежандра и Лагранжа оказалось недостаточно, и Галуа возвращается в коллеж.
Здесь ему впервые улыбается счастье — он встречает учителя, который смог оценить его гениальность. Ришар умел подниматься выше официальных программ, он был в курсе успехов наук и стремился расширить кругозор своих учеников. Отзывы Ришара о Эваристе просты: «Он работает лишь в высших областях математики».
И действительно, уже в семнадцать лет Галуа получает первые научные результаты. В 1829 году была опубликована его заметка «Доказательство одной теоремы о периодических непрерывных дробях». Тогда же Галуа представил в Парижскую академию наук другую работу. Она затерялась у Коши.
Галуа пытается вторично поступить в Политехническую школу, и вновь неудача. К этому вскоре добавилось событие, потрясшее юношу: затравленный политическими противниками, его отец покончил с собой. Обрушившиеся на Эвариста несчастья неизбежно повлияли на него: он стал нервным и вспыльчивым.
В 1829 году Галуа поступил в Нормальную школу. В ней готовились кандидаты на звание преподавателя. Здесь Эварист выполнил исследование по теории алгебраических уравнений и в 1830 году представил работу на "конкурс Парижской академии наук Его судьба была в руках бессменного секретаря Академии — Фурье. Фурье начинает читать рукопись, но вскоре умирает. Вторая рукопись, как и первая, исчезает.
242
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
В жизни Галуа наступило время, заполненное важными событиями. Он примкнул к республиканцам, вступил в «Общество друзей народа» и записался в артиллерию Национальной гвардии. За выступление против руководства его исключили из Нормальной школы.
14 июля 1831 года, в ознаменование очередной годовщины взятия Бастилии, состоялась манифестация республиканцев. Полиция арестовала многих манифестантов, среди них был и Галуа. Суд над Галуа состоялся 23 октября 1831 года. Его осудили на 9 месяцев заключения. Галуа продолжал свои исследования и в тюрьме.
Утром 30 мая 1832 года на дуэли в местечке Жантийи Галуа был смертельно ранен пулей в живот. Через день он скончался.
Математические работы Галуа, по крайней мере, те, что сохранились, составляют шестьдесят небольших страниц. Никогда еще труды столь малого объема не доставляли автору такой широкой известности.
В 1832 году Галуа, сидя в тюрьме, составляет программу, которую опубликовали лишь спустя семьдесят лет после его смерти. Но и в начале двадцатого века она не вызвала серьезного интереса и скоро была забыта. Только математики нового времени, продолжившие работу многих поколений ученых, осуществили, наконец, мечту Галуа.
«Я умоляю моих судей по крайней мере прочесть эти несколько страниц», — так начал Галуа свой знаменитый мемуар. Однако идеи Галуа были настолько глубоки и всеобъемлющи, что в то время их действительно трудно было оценить какому бы то ни было ученому.
«...Итак, я полагаю, что упрощения, получаемые за счет усовершенствования вычислений (при этом, конечно, имеются в виду упрощения принципиальные, а не технические), вовсе не безграничны. Настанет момент, когда математики смогут настолько четко предвидеть алгебраические преобразования, что трата времени и бумаги на их аккуратное проведение перестанет окупаться. Я не утверждаю, что анализ не сможет достигнуть чего-нибудь нового и помимо такого предвидения, но думаю, что без него в один прекрасный день все средства окажутся тщетными.
Подчинить вычисления своей воле, сгруппировать математические операции, научиться их классифицировать по степени трудности, а не по внешним признакам, — вот задачи математиков будущего так, как я их понимаю, вот путь, по которому я хочу пойти.
Пусть только никто не смешивает проявленную мной горячность со стремлением некоторых математиков вообще избегнуть каких бы то ни было вычислений. Вместо алгебраических формул они используют длинные рассуждения и к громоздкости математических преобразований добавляют громоздкость словесного описания этих преобразований, пользуясь языком, не приспособленным для выполнения таких задач. Эти математики отстали на сто лет.
Здесь не происходит ничего подобного. Здесь я занимаюсь анализом анализа. При этом самые сложные из известных сейчас преобразований
МОГУЩЕСТВЕННАЯ МАТЕМАТИКА
243
(эллиптические функции) рассматриваются всего лишь как частные случаи, весьма полезные и даже необходимые, но все же не общие, так что отказ от дальнейших более широких исследований был бы роковой ошибкой. Придет время, и преобразования, о которых идет речь в намеченном здесь высшем анализе, будут действительно производиться и будут классифицироваться по степени трудности, а не по виду возникающих здесь функций».
Здесь надо обязательно обратить внимание на слова «сгруппировать математические операции». Галуа, несомненно, подразумевает под этим теорию групп.
В первую очередь Галуа интересовали не отдельные математические задачи, а общие идеи, определяющие всю цепь соображений и направляющие логический ход мыслей. Его доказательства основываются на глубокой теории, позволяющей объединить все достигнутые к тому времени результаты и определить развитие науки надолго вперед. Через несколько десятков лет после смерти Галуа немецкий математик Давид Гильберт назвал эту теорию «установлением определенного остова понятий». Но какое бы название за ней не укрепилось, очевидно, что она охватывает очень большую область знаний.
«В математике, как в любой другой науке, — писал Галуа, — есть вопросы, требующие решения именно в данный момент. Это те насущные проблемы, которые захватывают умы передовых мыслителей независимо от их собственной воли и сознания».
Одна из проблем, над которой работал Эварист Галуа, — решение алгебраических уравнений. Что будет, если рассматривать лишь уравнения с числовыми коэффициентами? Ведь может же случиться, что хотя общей формулы для решения таких уравнений нет, корни каждого отдельного уравнения можно выразить в радикалах. А если это не так? Тогда должен быть какой-то признак, позволяющий определить, решается данное уравнение в радикалах или нет? Что же это за признак?
Первое из открытий Галуа состояло в том, что он уменьшил степень неопределенности их значений, т. е. установил некоторые из «свойств» этих корней. Второе открытие связано с методом, использованным Галуа для получения этого результата. Вместо того чтобы изучать само уравнение, Галуа изучал его «группу», или, образно говоря, его «семью».
«Группа, — пишет А. Дальма, — это совокупность предметов, имеющих определенные общие свойства. Пусть, например, в качестве таких предметов взяты действительные числа. Общее свойство группы действительных чисел состоит в том, что при умножении любых двух элементов этой группы мы получаем также действительное число. Вместо действительных чисел в качестве «предметов» могут фигурировать изучаемые в геометрии движения на плоскости; в таком случае свойство группы заключается в том, что сумма любых двух движений дает снова движение. Переходя от простых примеров к более сложным, можно в качестве «предметов» выбрать некоторые операции над предметами. В таком
244
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
случае основным свойством группы будет то, что композиция любых двух операций также является операцией. Именно этот случай и изучал Галуа. Рассматривая уравнение, которое требовалось решить, он связывал с ним некоторую группу операций (к сожалению, мы не имеем возможности уточнить здесь, как это делается) и доказывал, что свойства уравнения отражаются на особенностях данной группы. Поскольку различные уравнения могут иметь одну и ту же группу, достаточно вместо этих уравнений рассмотреть соответствующую им группу. Это открытие ознаменовало начало современного этапа развития математики.
Из каких бы «предметов» ни состояла группа: из чисел, движений или операций, — все они могут рассматриваться как абстрактные элементы, не обладающие никакими специфическими признаками. Для того чтобы определить группу, надо только сформулировать общие правила, которые должны выполняться для того, чтобы данную совокупность «предметов» можно было назвать группой. В настоящее время математики называют такие правила групповыми аксиомами, теория групп состоит в перечислении всех логических следствий из этих аксиом. При этом последовательно обнаруживаются все новые и новые свойства; доказывая их, математик все более и более углубляет теорию. Существенно, что ни сами предметы, ни операции над ними никак не конкретизируются. Если после этого при изучении какой-нибудь частной задачи приходится рассмотреть некоторые специальные математические или физические объекты, образующие группу, то, исходя из общей теории, можно предвидеть их свойства. Теория групп, таким образом, дает ощутимую экономию в средствах; кроме того, она открывает новые возможности применения математики в исследовательской работе».
Введение понятия группы избавило математиков от обременительной обязанности рассматривать множество различных теорий. Оказалось, что нужно лишь выделить «основные черты» той или иной теории, и так как, по сути дела, все они совершенно аналогичны, то достаточно обозначить их одним и тем же словом, и сразу становится ясно, что бессмысленно изучать их по отдельности.
Галуа стремится внести в разросшийся математический аппарат новое единство. Теория групп — это, прежде всего, наведение порядка в математическом языке.
Теория групп, начиная с конца XIX века, оказала огромное влияние на развитие математического анализа, геометрии, механики и, наконец, физики. Оно впоследствии проникло в другие области математики — появились группы Ли в теории дифференциальных уравнений, группы Клейна в геометрии. Возникли также группы Галилея в механике и группы Лоренца в теории относительности.
Н. И. Лобачевский
НЕЕВКЛИДОВА ГЕОМЕТРИЯ
По определению Евклида параллельные линии — прямые, лежащие в одной плоскости и никогда не встречающиеся, как бы далеко мы их ни продолжали.
Но уже древнейшие комментаторы Евклида Посидоний (II век до нашей эры), Геминус (I век до нашей эры), Птолемей (II век нашей эры) — не считали пятый постулатум Евклида имеющим ту же очевидность, как другие по-стулатумы и аксиомы Евклида, и пытались или вывести его, как следствие других положений, или заменить определение параллельных, данное Евклидом, другим определением.
Во второй половине XVII столетия Лейбниц также критически относился к основным положениям Евклида. Как известно, он хотел также построить чисто геометрической анализ, который непосредственно выражал бы свойства положения, подобно тому как алгебра выражает величину.
Но только в первой половине XVIII века приходит мысль применить к вопросу о параллельных линиях и систематически провести в теории параллельных линий тот метод доказательства от противного, которым так часто пользовались греческие математики.
Эта гениальная идея принадлежала Саккери. В сочинении, появившемся в год его смерти «Евклид, избавленный от всякого пятна», Саккери берет исходным пунктом четырехугольник, которого две противоположные стороны, перпендикулярные к основанию, равны между собой. В таком четырехугольнике углы, образуемые равными сторонами с стороною, противоположною основанию, равны, и доказательство этого свойства четырехугольника не зависит от постулатума Евклида. Если они прямые, то постулатум Евклида доказан, так как в этом случае сумма углов треугольника равна двум прямым. Но Саккери (и в этом состоит его оригинальная гениальная мысль) делает и две другие гипотезы — гипотезу острого и гипотезу тупого угла, выводит из этих гипотез вытекающие следствия и пытается доказать невозможность этих следствий, т.е. допустимость только одной гипотезы прямого угла. Ему легко удается доказать, что гипотеза тупого угла недопустима, так как приводит к противоречиям. Для того чтобы найти такое же противоречие в гипотезе острого угла, он выводит ряд замечательных теорем, которые потом были снова доказаны Лежандром. Таковы, например, теоремы, по которым если та или другая или третья гипотеза имеет место для одного четырехугольника, то она имеет место и для всякого другого.
246
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
Через три года после ее появления, в 1766 году, Ламберт ставит ту же задачу, что и Саккери. Вместо четырехугольника с двумя прямыми углами и двумя равными сторонами Ламберт рассматривает четырехугольник с тремя прямыми углами и делает три гипотезы относительно четвертого угла. Его изложение имеет некоторые особенности сравнительно с изложением Саккери: он избегает прибегать к соображениям, основанным на непрерывности. Из того, что в гипотезах тупого и острого угла не существует подобия фигур, Ламберт выводит заключение о существовании абсолютной меры.
В 1799 году гениальный математик Карл Гаусс пошел по тому пути, по которому до него шли Саккери и Ламберт, — по пути планомерного вывода всех следствий гипотезы острого угла. Но его размышления привели к сомнению в возможности доказать аксиому Евклида, и к 1816 году у математика созрело убеждение в невозможности такого доказательства.
Высказанное публично мнение Гаусса о недоказуемости аксиомы Евклида не имело влияния и даже подверглось грубым нападкам. Это было одной из причин, почему он решился не публиковать своих исследований и мыслей по вопросу об основаниях, «боясь крика бео-тийцев» (письмо к Бесселю от 27 января 1829 года). Но он не прервал своих исследований и с величайшим интересом и сочувствием приветствовал те работы и мысли, которые совпадали с его исследованиями и взглядами.
Как далеко он пошел по этому пути, показывает его письмо к Вольфгангу Болиаи от 6 марта 1832 года, в котором Гаусс говорит, что между 1797 и 1802 годами он нашел те результаты, к которым пришел Иоганн Болиаи. Например, чисто геометрическое доказательство теоремы, что в неевклидовой геометрии разность суммы углов треугольника от 180 градусов пропорциональна площади треугольника.
Вольфганг Болиаи, друг школьных лет Гаусса, проявлял большой интерес к теории параллельных линий. Этот необычайный интерес, по свидетельству его письма к сыну в 1820 году, отравил ему все радости жизни, сделал его мучеником стремления освободить геометрию от пятна, «удалить облако, затемняющее красоту девы-истины». Но в то время как усилия почти всей жизни отца были направлены к доказательству 5-го постулатума, и ему не удалось достигнуть цели, его талантливый сын явился одним из творцов неевклидовой геометрии.
Иоганн Болиаи родился в 1802 году в Клаузенбурге. Уже в 1807 году отец с восторгом и гордостью пишет Гауссу о необыкновенных математических способностях мальчика, который к тринадцати годам уже изучил планиметрию, стереометрию, тригонометрию, конические сечения, а в 14 лет уже решал с легкостью задачи дифференциального и интегрального исчисления. Вольфгангу не удалось послать сына учиться в Геттингене у «математического колосса», и в 1818 году Иоганн поступил в Венскую инженерную академию, где уделялось большое
МОГУЩЕСТВЕННАЯ МАТЕМАТИКА
247
внимание высшей математике. В 1823 году он кончил курс в академии и, как военный инженер, был послан в крепость Теметвар.
Вполне естественно, что обладавший необыкновенными математическими способностями Иоганн еще почти мальчиком решил испытать свои силы на решении того вопроса, над которым мучился отец, но про который отец же говорил ему, что решивший его достоин алмаза величиною в земной шар. В 1820 году Иоганн сообщает отцу, что он уже нашел путь к доказательству аксиомы, и тогда-то отец пишет ему горячее письмо, предостерегающее его от занятия теориею параллельных линий.
В зимнюю ночь 1823 года он нашел то основное соотношение между длиною перпендикуляра, опущенного из точки на прямую, и углом, который составляет с этим перпендикуляром ассимптота (параллельная линия Лобачевского), которое является ключом к неевклидовой тригонометрии. В восторге от своего открытия, которое, казалось ему, открывало путь к доказательству XI аксиомы, он пишет 3 ноября из Теметвара отцу: «Я создал новый, другой мир из ничего. Все, что посылал до сих пор, есть только карточный домик в сравнении с воздвигаемою теперь башнею».
В 1829 году Вольфганг закончил большое математическое сочинение, над которым трудился около двадцати лет. Как приложение к этой книге, было напечатано и бессмертное сочинение Иоганна Болиаи. Конечно, Болиаи не подозревали, что в это же самое время в далекой Казани Лобачевский печатал свою первую работу «О началах геометрии» (1829 год).
Николай Иванович Лобачевский (1792—1856) родился в Макарьев-ском уезде Нижегородской губернии. Отец его занимал место уездного архитектора и принадлежал к числу мелких чиновников, получавших скудное содержание. Бедность, окружавшая его в первые дни жизни, перешла в нищету, когда в 1797 году умер отец и двадцатипятилетняя мать осталась одна с детьми без всяких средств. В 1802 году она привезла троих сыновей в Казань и определила их в Казанскую гимназию, где очень быстро заметили феноменальные способности ее среднего сына.
Когда в 1804 году старший класс Казанской гимназии был преобразован в университет, Лобачевский был включен в число студентов по естественно-научному отделению. Учился юноша блестяще.
Лобачевский получил прекрасное образование. Лекции по астрономии читал профессор Литрофф. Лекции по математике он слушал у профессора Бартельса, воспитанника такого крупного ученого, как Карл Фридрих Гаусс.
Уже в 1811 году Лобачевский получил степень магистра, и его оставили в университете для подготовки к профессорскому званию. В 1814 году Лобачевский получил звание адъюнкта чистой математики, а в 1816 году был сделан профессором.
248
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
С 1819 года Лобачевский преподавал астрономию. Административная деятельность ученого началась с 1820 года, когда он был избран деканом.
Несмотря на изнурительную практическую деятельность, не оставлявшую ни минуты отдыха, Лобачевский никогда не прекращал своих научных занятий и во время своего ректорства напечатал в «Ученых записках Казанского университета» лучшие свои сочинения.
Если Иоганн Болиаи начал заниматься теорией параллельных линий под влиянием своего отца, то Лобачевский мог начать заниматься ею только потому, что интерес к этой теории особенно оживился в конце XVIII и начале XIX столетия.
В двадцатипятилетие, предшествующее появлению первой работы Лобачевского, не проходило и года, в которой не появилось бы одно или несколько сочинений по теории параллельных линий. Известно до 30 сочинений, напечатанных только на немецком и французском языках с 1813 по 1827 год.
Работы Лежандра возбудили интерес к теории параллельных линий и в среде русских математиков. Первый академик из русских, заслуживший своими печатными трудами почетное место в истории русского математического преподавания, СЕ. Гурьев в наиболее важном из своих сочинений «Опыт о усовершении элементов геометрии», напечатанном в 1798 году, обратил особое внимание на теорию параллельных линий и на доказательства, данные Лежандром. Критикуя эти доказательства, Гурьев предлагает и свое собственное.
Основываясь на утверждении, что при определенных условиях прямые, которые кажутся нам параллельными, могут пересекаться, Лобачевский пришел к выводу о возможности создания новой, непротиворечивой геометрии. Поскольку ее существование было невозможно представить в реальном мире, ученый назвал ее «воображаемой геометрией». Но к этой мысли и он, как и И. Болиаи, пришел не сразу.
Лекции 1815—1817 годов, учебник геометрии 1823 года и не дошедшая до нас «Exposition succincte des principes de la geometrie», прочтенная в заседании физико-математического отделения 12 февраля 1826 года, — таковы три этапа мысли Лобачевского в области теории параллельных линий. В лекциях он дает три различных способа для ее обоснования; в учебнике 1823 года он заявляет, что все до сих пор данные доказательства не заслуживают быть почтены в полном смысле математическими, и, наконец, через три года он дает уже ту систему построения геометрии на положении, отличном от постулатума Евклида, которая обессмертила его имя.
«Exposition» не дошло до нас. Первое печатное сочинение Лобачевского, которое он называет извлечением из «Exposition», печаталось в «Казанском вестнике» в 1829—1830 годах. Эта дата устанавливает приоритет опубликования открытия Лобачевского сравнительно с И. Болиаи, так как «Appendix» последнего был напечатан в 1831 году, а вышел
МОГУЩЕСТВЕННАЯ МАТЕМАТИКА
249
из печати только в 1832 году. Как показывает заглавие «Exposition», оно имело своим предметом не только точную теорию параллельных линий, но посвящено было вместе с тем вопросу о началах геометрии.
Хотя и И. Болиаи, и Лобачевский за это открытие были избраны членами Ганноверской академии наук, права гражданства получила в Западной Европе именно геометрия Лобачевского.
В 1837 году труды Лобачевского печатаются на французском языке. В 1840 году он издал на немецком языке свою теорию параллельных, заслужившую признание великого Гаусса. В России же Лобачевский не видел оценки своих научных трудов.
Очевидно, исследования Лобачевского находились за пределами понимания его современников. Одни игнорировали его, другие встречали его труды грубыми насмешками и даже бранью. В то время как наш другой высокоталантливый математик Остроградский пользовался заслуженной известностью, никто не знал Лобачевского; к нему и сам Остроградский относился то насмешливо, то враждебно.
Совершенно правильно или, вернее, основательно один геометр назвал геометрию Лобачевского звездной геометрией. О бесконечных же расстояниях можно составить себе понятие, если вспомнить, что существуют звезды, от которых свет доходит до Земли тысячи лет. Итак, геометрия Лобачевского включает в себя геометрию Евклида не как частный, а как особый случай. В этом смысле первую можно назвать обобщением геометрии нам известной. Теперь возникает вопрос, принадлежит ли Лобачевскому изобретение четвертого измерения? Нисколько. Геометрия четырех и многих измерений создана была немецким математиком, учеником Гаусса, Риманом. Изучение свойств пространств в общем виде составляет теперь неевклидову геометрию, или геометрию Лобачевского. Пространство Лобачевского есть пространство трех измерений, отличающееся от нашего тем, что в нем не имеет места постулат Евклида. Свойства этого пространства в настоящее время уясняются при допущении четвертого измерения. Но этот шаг принадлежит уже последователям Лобачевского.
Естественно возникает вопрос, где же находится такое пространство. Ответ на него был дан крупнейшим физиком XX века Альбертом Эйнштейном. Основываясь на работах Лобачевского и постулатах Римана, он создал теорию относительности, подтвердившую искривленность нашего пространства.
В соответствии с этой теорией любая материальная масса искривляет окружающее ее пространство. Теория Эйнштейна была многократно подтверждена астрономическими наблюдениями, в результате которых стало ясно, что геометрия Лобачевского является одним из фундаментальных представлений об окружающей нас Вселенной.
МОГУЩЕСТВЕННАЯ МАТЕМАТИКА
251
Норберт Винер
КИБЕРНЕТИКА
«Винер по праву назван отцом кибернетики, — пишет в своей «Кибернетической смеси» В.Д. Пекелис. — Его книга «Кибернетика» появилась в 1948 году и потрясла многих неожиданностью выводов, оказала ошеломляющее влияние на общественное мнение. Ее появление можно уподобить исподволь подготовленному взрыву.
В истории кибернетики, как и в любой другой науке, два периода: накопление материала и оформление его в новую науку... ...Здесь стоит упомянуть посвященные теории регулирования работы инженера А. Стодолы, опубликованные в конце прошлого века в одном из швейцарских журналов.. В них рассматривался принцип управления с помощью обратной связи. Своеобразие истории вычислительной техники знаменательно тем, что первые счетные машины сразу же открыли перед человеком возможность механизации умственной работы. Здесь нельзя обойти вниманием «Математическое исследование логики» Джорджа Буля. Оно положило начало разработке алгебры логики, которой широко пользуется теперь кибернетика.
Когда в теории вероятностей возник новый раздел — теория информации, универсальность новой теории, хоть и не сразу, стала ясна всем. Обнаружилось, например, соответствие между количеством информации и мерой перехода различных форм энергии в тепловую — энтропией. Впервые на это указал в 1929 году известный физик Л. Сциллард. Впоследствии теория информации стала одной из важных основ в кибернетике.
В XIX веке заметны достижения и в физиологии высшей нервной деятельности. Особенно в исследовании процессов обучения животных. В 30-х годах нашего столетия явлением стала теория физиологической активности Беркштейна, еще позже принцип функциональной системы Анохина».
Вместе с прогрессом происходит и сближение технических средств, используемых и в физиологии и в автоматике. Такое сближение сопровождается взаимным обменом принципами построения структурных схем, идеями моделирования, методами анализа и синтеза систем.
Подобную тенденцию одним из первых уловил русский философ Александр Александрович Богданов. «Мой исходный пункт, — писал ученый, — заключается в том, что структурные отношения могут быть
обобщены до такой формальной чистоты схем, как в математике и отношениях величин, и на такой основе организационные задачи могут решаться способами, аналогичными математическим».
Таким образом, Богданов предвосхитил появление общей теории систем — одной из ключевых концепций кибернетики. Русский ученый сумел обосновать и принцип обратной связи, назвав его «механизмом двойного взаимного регулирования».
Позднее, в 1936 году английский математик А. Тьюринг опубликовал работу, описывающую абстрактную вычислительную машину. Некоторые положения его труда во многом предвосхитили различные проблемы кибернетики.
Однако решающее слово в рождении новой науки сказал крупный американский математик Винер.
Норберт Винер (1894—1964) родился в городе Колумбия штата Миссури. Читать он научился с четырех лет, а в шесть уже читал Дарвина и Данте. В девять лет он поступил в среднюю школу, в которой начинали учиться дети с 15—16 лет, закончив предварительно восьмилетку. Среднюю школу он окончил, когда ему исполнилось одиннадцать. Сразу же мальчик поступил в высшее учебное заведение, Тафте-колледж. После окончания его, в возрасте 14 лет, получил степень бакалавра искусств. Затем учился в Гарвардском и Корнельском университетах, в 17 лет в Гарварде стал магистром искусств, в 18 — доктором философии по специальности «математическая логика».
Гарвардский университет выделил Винеру стипендию для учебы в Кембриджском (Англия) и Геттингенском (Германия) университетах. Перед Первой мировой войной, весной 1914 года Винер переехал в Гет-тинген, где в университете учился у Э.Ландау и великого Д.Гильберта.
В начале войны Винер вернулся в США, год провел в Кембридже, но в сложившихся условиях научных результатов добиться не мог. В Колумбийском университете он стал заниматься топологией, но начатое до конца не довел. В 1915—1916 учебном году Винер в должности ассистента преподавал математику в Гарвардском университете.
Следующий учебный год Винер работал по найму в университете штата Мэн. После вступления США в войну он работал на заводе «Дженерал электрик», откуда перешел в редакцию Американской энциклопедии в Олбани. Затем Норберт какое-то время участвовал в составлении таблиц артиллерийских стрельб на полигоне, где его даже зачислили в армию, но вскоре из-за близорукости уволили. Потом он перебивался статьями в газеты, написал две работы по алгебре, вслед за опубликованием которых получил рекомендацию профессора математики В.Ф. Осгуда и в 1919 году поступил на должность ассистента кафедры математики Массачусетсского технологического института (МТИ). Так началась его служба в этом институте, продолжавшаяся всю жизнь.
Здесь Винер ознакомился с содержанием статистической механики У. Гиббса. Ему удалось связать основные положения ее с лебеговским
252
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
интегрированием при изучении броуновского движения и написать несколько статей. Такой же подход оказался возможным в установлении сущности дробового эффекта в связи с прохождением электрического тока по проводам или через электронные лампы.
Возвратившись в США, Винер усиленно занимается наукой. В 1920— 1925 годах он решает физические и технические задачи с помощью абстрактной математики и находит новые закономерности в теории броуновского движения, теории потенциала, гармоническом анализе.
В 1922, 1924— и 1925 годах Винер побывал в Европе у знакомых и родственников семьи. В 1925 году он выступил в Геттингене с сообщением о своих работах по обобщенному гармоническому анализу, заинтересовавшим Гильберта, Куранта и Борна. Впоследствии Винер понял, что его результаты в некоторой степени связаны с развивавшейся в то время квантовой теорией.
Тогда же Винер познакомился с одним из конструкторов вычислительных машин — В. Бушем и высказал пришедшую ему однажды в голову идею нового гармонического анализатора. Буш претворил ее в жизнь.
Продвижение Винера по службе шло медленно. Он пытался получить приличное место в других странах, но у него не вышло. Однако пришла пора, наконец, и везения. На заседании Американского математического общества Винер встретился с Я.Д. Тамаркиным, геттин-генским знакомым, всегда высоко отзывавшимся о его работах. Такую же поддержку оказывал ему неоднократно приезжавший в США Харди. И это повлияло на положение Винера: благодаря Тамаркину и Харди он стал известен в Америке.
Особо значимой оказалась совместная деятельность Винера с приехавшим из Германии в Гарвардский университет Э. Хопфом — в результате чего в науку вошло «уравнение Винера — Хопфа», описывающее радиационные равновесия звезд, а также относящееся к другим задачам, в которых ведется речь о двух различных режимах, отделенных границей.
В 1929 году в шведском журнале «Акта математика» и американском «Анналы математики» вышли две большие итоговые статьи Винера по обобщенному гармоническому анализу.
С 1932 года Винер — профессор МТИ. В Гарварде он познакомился с физиологом А. Розенблютом и стал посещать его методологический семинар, объединявший представителей различных наук. Этот семинар сыграл важную роль в формировании у Винера идей кибернетики. После отъезда Розенблюта в Мехико заседания семинара проводились иногда в Мехико, иногда в МТИ.
В 1934 году Винер получил приглашение из университета Цинхуа (в Пекине) прочитать курс лекций по математике и электротехнике. Год посещения Китая он считал годом полного своего становления как ученого.
Во время войны Винер почти целиком посвятил свое творчество военным задачам. Он исследует задачу движения самолета при зенитном
МОГУЩЕСТВЕННАЯ МАТЕМАТИКА
253
обстреле. Обдумывание и экспериментирование убедили Винера в том, что система управления огнем зенитной артиллерии должна быть системой с обратной связью; что обратная связь играет существенную роль и в человеческом организме. Все большую роль начинают играть прогнозирующие процессы, осуществляя которые нельзя полагаться лишь на человеческое сознание.
Существовавшие в ту пору вычислительные машины необходимым быстродействием не обладали. Это заставило Винера сформулировать ряд требований к таким машинам. По сути дела, им были предсказаны пути, по которым в дальнейшем пошла электронно-вычислительная техника. Вычислительные устройства, по его мнению, «должны состоять из электронных ламп, а не из зубчатых передач или электромеханических реле. Это необходимо, чтобы обеспечить достаточное быстродействие». Следующее требование состояло в том, что в вычислительных устройствах «должна использоваться более экономичная двоичная, а не десятичная система счисления». Машина, полагал Винер, должна сама корректировать свои действия, в ней необходимо выработать способность к самообучению. Для этого ее нужно снабдить блоком памяти, где откладывались бы управляющие сигналы, а также те сведения, которые машина получит в процессе работы.
Если ранее машина была лишь исполнительным органом, всецело зависящим от воли человека, то ныне она становилась думающей и приобретала определенную долю самостоятельности.
В 1943 году вышла статья Винера, Розенблюта, Байглоу «Поведение, целенаправленность и телеология», представляющая собой набросок кибернетического метода.
В 1948 году в нью-йоркском издательстве «Джон Уили энд Санз» и парижском «Херманн эт Ци» выходит книга Винера «Кибернетика».
«Основной тезис книги, — пишет Г.Н. Поваров в предисловии к «Кибернетике», — подобие процессов управления и связи в машинах, живых организмах и обществах, будь то общества животных (муравейник) или человеческие. Процессы эти суть, прежде всего, процессы передачи, хранения и переработки информации, т. е. различных сигналов, сообщений, сведений. Любой сигнал, любую информацию, независимо от ее конкретного содержания и назначения, можно рассматривать как некоторый выбор между двумя или более значениями, наделенными известными вероятностями (селективная концепция информации), и это позволяет подойти ко всем процессам с единой меркой, с единым статистическим аппаратом. Отсюда мысль об общей теории управления и связи — кибернетике.
Количество информации — количество выбора — отождествляется Винером с отрицательной энтропией и становится, подобно количеству вещества или энергии, одной из фундаментальных характеристик явлений природы. Таков второй краеугольный камень кибернетического здания. Отсюда толкование кибернетики как теории организации,
254
100 ВЕЛИКИХ НАУЧНЫХ ОТКРЫТИЙ
как теории борьбы с мировым хаосом, с роковым возрастанием энтропии.
Действующий объект поглощает информацию из внешней среды и использует ее для выбора правильного поведения. Информация никогда не создается, она только передается и принимается, но при этом может утрачиваться, исчезать. Она искажается помехами, «шумом», на пути к объекту я внутри его и теряется для него».
Основоположником современной теории управления сам Винер считал Дж.К. Максвелла, и это совершенно справедливо. Теория автоматического регулирования была в основном сформулирована Дж. Максвеллом, И. Вышнеградским, А. Ляпуновым и А. Стодолой. В чем же заслуга Н. Винера? Может быть, его книга просто представляет собой компиляцию известных сведений, собирает воедино известный, но разрозненный материал?
Основная заслуга Винера в том, что он впервые понял принципиальное значение информации в процессах управления. Говоря об управлении и связи в живых организмах и машинах, он видел главное не просто в словах «управление» и «связь», а в их сочетании. Точно так же, как в теории относительности важен не сам факт конечности скорости взаимодействия, а сочетание этого факта с понятием одновременности событий, протекающих в различных точках пространства. Кибернетика — наука об информационном управлении, и Винера с полным правом можно считать творцом этой науки.
«С выходом книги в свет кончился первый, инкубационный период истории кибернетики, — пишет Г.Н. Поваров, — и начался второй, крайне бурный — период распространения и утверждения. Дискуссии потрясли ученый мир. Кибернетика нашла горячих защитников и столь же горячих противников...
...Одни усматривали в кибернетике сплошной философский выверт и «холодную войну» против учения Павлова. Другие, энтузиасты, относили на ее счет все успехи автоматики и вычислительной техники и соглашались видеть уже в тогдашних «электронных мозгах» подлинных разумных существ. Третьи, не возражая против сути проекта, сомневались, однако, в успехе предпринятого синтеза и сводили кибернетику к простым призывам.
...Вокруг всего этого бушевали страсти. Однако кибернетика выиграла, в конце концов, сражение и получила право гражданства в древней семье наук. Период утверждения занял приблизительно десятилетие. Постепенно решительное отрицание кибернетики сменилось поисками в ней «рационального зерна» и признанием ее полезности и неизбежности. К 1958 году уже почти никто не выступал совсем против. Винеровский призыв к синтезу раздался в чрезвычайно благоприятный момент, обстоятельства работали на кибернетику, несмотря на ее несовершенства и преувеличения».
В 1959 году академик А.Н. Колмогоров писал: «Сейчас уже поздно спорить о степени удачи Винера, когда он в своей известной книге в
МОГУЩЕСТВЕННАЯ МАТЕМАТИКА
255
1948 году выбрал для новой науки название «кибернетика». Это название достаточно установилось и воспринимается как новый термин, мало связанный со своей греческой этимологией. Кибернетика занимается изучением систем любой природы, способных воспринимать, хранить и перерабатывать информацию и использовать ее для управления и регулирования. При этом кибернетика широко пользуется математическим методом и стремится к получению конкретных специальных результатов, позволяющих как анализировать такого рода системы (восстанавливать их устройство на основании опыта обращения с ними), так и синтезировать их (рассчитывать схемы систем, способных осуществлять заданные действия). Благодаря этому своему конкретному характеру кибернетика ни в какой мере не сводится к философскому обсуждению природы «целесообразности» в машинах и философскому анализу изучаемого ею круга явлений».
ТАЙНЫ ВСЕЛЕННОЙ
ГЕОЦЕНТРИЧЕСКАЯ МОДЕЛЬ МИРА
Уже в древности люди хотели получить ответы на такие важные вопросы, как «что такое наша Земля?», «каковы ее размеры?», «каково ее место во Вселенной?» и т. д. Но поиски ответов оказались долгими и трудными.
«Первые ответы на вопрос «как устроен окружающий мир?» древние люди составляли на основе своих непосредственных впечатлений, — пишет в своей книге А.И.Климишин, — так, не ощущая никаких движений

<< Предыдущая

стр. 8
(из 16 стр.)

ОГЛАВЛЕНИЕ

Следующая >>