<< Предыдущая

стр. 3
(из 4 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

наблюдений.
Проведя эти расчеты, можно легко проверить соблюдение SARP. Мы про-
сто смотрим, нет ли одновременно звездочки в строке t, столбце s и в строке
s, столбце t. Если таковая имеется, то мы обнаружили ситуацию, в которой
наблюдение / выявленно предпочитается — прямо или косвенно — наблюде-
нию s, и в то же время наблюдение s выявленно предпочитается наблюдению
/. Это нарушение сильной аксиомы выявленных предпочтений.
ВЫЯВЛЕННЫЕ ПРЕДПОЧТЕНИЯ__________________________151

С другой стороны, если мы не обнаружим таких нарушений, то будем
знать, что имеющиеся у нас наблюдения совместимы с экономической теори-
ей поведения потребителей. Эти наблюдения могли быть порождены дейст-
виями оптимизирующего выбор потребителя со стандартными предпочтения-
ми. Таким образом, у нас есть полностью отработанный тест на проверку со-
вместимости действий конкретного потребителя с экономической теорией.
Это важно, так как моделью поведения потребителей можно пользоваться
для моделирования функционирования целого ряда экономических единиц.
Представим себе, например, домохозяйство, состоящее из нескольких человек.
Будет ли потребительский выбор домохозяйства максимизировать "полезность
домохозяйства"? Если у нас имеются какие-то данные о потребительском вы-
боре домохозяйств, можно применить сильную аксиому выявленных предпоч-
тений, чтобы посмотреть, так ли это. Другим типом экономических единиц,
поведение которых можно уподобить поведению потребителя, являются бес-
прибыльные организации, такие, как больница или университет. Максимизи-
руют ли университеты функцию полезности, производя свой экономический
выбор? Если бы у нас имелся перечень ситуаций экономического выбора, про-
изводимого университетом при различных ценах, мы могли бы, в принципе,
ответить на такого рода вопрос.

7.8. Индексы
Предположим, что мы рассматриваем потребительские наборы некоего потре-
бителя в разные периоды и хотим выяснить, как изменилось потребление с од-
ного периода до другого. Пусть Ь обозначает базисный период, a t — какой-то
другой период. Как сравнить "среднее" потребление в году / и потребление в
базисном году?
Пусть в период t цены равны (р[,р'2) и потребитель выбирает набор (x\,xi )•
В базисном периоде Ь цены равны (р\,р\) и выбор потребителя представлен
набором (х\,х\˜). Нас интересует, как изменилось "среднее" потребление дан-
ного потребителя.
Если обозначить через w\ и м»2 некие "веса", используемые для формирова-
ния среднего, то можно рассмотреть индекс объема следующего вида:

Ч˜


Если Iq больше 1, можно утверждать, что "среднее" потребление с периода Ь
до периода t возросло; если Iq меньше 1, можно говорить о снижении "сред-
него" потребления.
Вопрос заключается в том, что использовать в качестве весов. Естественно
было бы выбрать на эту роль цены рассматриваемых товаров, поскольку они, в
определенном смысле, измеряют относительную значимость этих товаров. Но у
нас есть два набора цен: какой из них мы должны использовать?
152 ______________________________________ Глава 7

Если взять в качестве весов цены базисного периода, получим индекс, име-
нуемый индексом Ласпейреса, а если взять цены периода t, получим индекс
Пааше. С помощью обоих указанных индексов дается ответ на- вопрос, что
произошло со "средним" потреблением, однако, для усреднения в них исполь-
зуются разные веса.
Подстановка в приведенный выше индекс объема в качестве весов цены
периода t дает индекс объема (или индекс реального дохода — прим. науч. ред.)
Пааше, имеющий вид



а подстановка цен периода b — индекс объема (или индекс реального дохода)
Ласпейреса, имеющий вид
г9 ^
˜р
Оказывается, величина индексов Ласпейреса и Пааше может рассказать не-
что весьма интересное о благосостоянии потребителя. Допустим, мы рассмат-
риваем ситуацию, в которой индекс реального дохода Пааше больше 1 :

р l 2 2>1
=

'
Какой вывод можно сделать о благосостоянии потребителя в момент t по
сравнению с его благосостоянием в момент 6?
Ответ на этот вопрос дают выявленные предпочтения. Перекрестное пере-
множение частей данного неравенства дает неравенство

р[х{ + Р'24> Р\4 +Р2*2,

которое показывает, что благосостояние потребителя должно быть выше в мо-
мент /, нежели в момент Ь, поскольку в ситуации t он мог бы потребить потре-
бительский набор Ь, но предпочел не делать этого.
Что, если индекс реального дохода Пааше меньше 1? Тогда мы имели бы
неравенство
р[х{ + р'2х'2 < р{х\
показывающее, что когда потребитель выбрал набор (х\,Х2)> набор (x\,xz) не
был ему доступен. Это, однако, ничего не говорит нам о приоритетах потреби-
теля в отношении указанных наборов. Если нечто стоит больше, чем вы можете
позволить себе заплатить, это вовсе не означает, что вы предпочитаете это не-
что тому, что вы потребляете в настоящий момент.
ВЫЯВЛЕННЫЕ ПРЕДПОЧТЕНИЯ_____ ____________________ 153

А что можно сказать по поводу индекса реального дохода Ласпейреса? Он
используется аналогичным образом. Предположим, что индекс реального дохо-
да Ласпейреса .меньше 1:
г />?*!+ Р2*2
= <}

˜
Перекрестное умножение даст нам неравенство
Р\*\ + Р2*2

говорящее о том, что (х\,х\) выявленно предпочитается (x\,x-t_)- Таким обра-
зом, благосостояние потребителя выше в момент Ь, чем в момент t.

7.9. Индексы цен
Индексы цен используются примерно таким же образом. Вообще, индекс
цен — это взвешенная средняя цен:


Р\Щ + P2W2
В этом случае естественно выбрать в качестве весов для расчета средние ко-
личества товаров. Мы получим два разных индекса в зависимости от того, что
выбрать в качестве весов. Если весами выбраны количества товаров в период t,
мы получаем индекс цен Пааше:
р - Р\х\ +Р2Х2
р
'
а если весами выбраны количества товаров базисного периода, получаем индекс
цен Ласпейреса:
т ,

'
Предположим, что индекс цен Пааше меньше 1; что говорят нам в этом слу-
чае выявленные предпочтения о благосостоянии потребителя в периоды tvibt
Выявленные предпочтения не говорят об этом ничего. Проблема заключа-
ется в том, что теперь в числителе и в знаменателе дробей, образующих индек-
сы, стоят разные цены, так что сравнение с позиций выявленных предпочте-
ний произвести невозможно.
Введем новый индекс изменения общих расходов (именуемый также индек-
сом номинального дохода — прим. науч. ред.), определив его как
154______________________________________ Глава 7

Это отношение общих расходов периода t к общим расходам периода Ь.
Допустим теперь, вам говорят, что индекс цен Пааше больше М. Это озна-
чает, что
р-
"
Сократив числители в обеих частях этого выражения и произведя перекре-
стное умножение, получаем
Р\*\ *

Это неравенство говорит о том, что набор, выбранный в году Ь, выявление»
предпочитается набору, выбранному в году /. Из данного анализа следует, что
если индекс цен Пааше больше индекса номинального дохода, то благосостоя-
ние потребителя должно быть выше в году Ь, чем в году t.
Интуитивно это понятно. В конце концов, если с периода Ь до периода /
цены растут быстрее дохода, то можно ожидать, что это должно снизить благо-
состояние потребителя. Анализ с позиций выявленных предпочтений, прове-
денный выше, подтверждает это интуитивно полученное умозаключение.
Аналогичное утверждение можно сделать и в отношении индекса цен Лас-
пейреса. Если индекс цен Ласпейреса меньше М, то благосостояние потребите-
ля в году t должно быть выше, чем в году Ь. Опять-таки это просто подтвержда-
ет интуитивно возникающую мысль о том, что при росте цен медленнее дохода
благосостояние потребителя должно расти. В случае индексов цен важно не то,
больше или меньше данный индекс единицы, а то, больше он или меньше ин-
декса номинального дохода.

ПРИМЕР: Индексация выплат
по социальному обеспечению
Для многих пожилых людей выплаты по социальному обеспечению — единст-
венный источник дохода. По этой причине предпринимались попытки коррек-
тировать эти выплаты таким образом, чтобы и при изменении цен поддержи-
вать постоянную покупательную способность. Такого рода схему именуют ин-
дексацией, поскольку она предполагает зависимость размеров выплат от изме-
нения какого-то индекса цен или индекса стоимости жизни.
Один из предлагаемых вариантов индексации состоит в следующем. В не-
коем базисном году Ь экономисты определяют средний потребительский набор
для пожилых граждан. В каждом последующем году выплаты из системы соци-
ального обеспечения корректируются таким образом, чтобы "покупательная
способность" среднего пожилого гражданина оставалась постоянной в том
смысле, что средний получатель выплат из системы социального обеспечения
по-прежнему мог бы позволить себе приобрести потребительский набор, кото-
рый был доступен ему в году Ь, как показано на рис.7.6.
ВЫЯВЛЕННЫЕ ПРЕДПОЧТЕНИЯ 155

Один из любопытных результатов применения такой схемы индексации со-
стоит в том, что благосостояние среднего пожилого фажданина при этом почти
всегда будет выше, чем в базисном году Ь. Пусть год b выбран в качестве базис-
ного для построения индекса цен. Тогда набор (xf.x*) есть оптимальный набор
при ценах (р\,р\ )• Это означает, что бюджетная линия при ценах (р\,р\) долж-
на быть касательной к кривой безразличия, проходящей через точку (х\,х\ ).



Кривые
безразличия



Оптимальный выбор
базисного периода

Бюджетная
Оптимальный линия
выбор после базисного
индексации периода



Бюджетная
линия после
Бюджетная
индексации
линия
до индексации



Рис.
Индексация социального обеспечения. Изменение цен обычно повышает благо-
состояние потребителя по сравнению с базисным годом. 7.6


Предположим теперь, что цены меняются. Пусть цены растут, так что, в от-
сутствие системы социального обеспечения бюджетная линия сдвинулась бы
внутрь и стала бы более крутой. Сдвиг бюджетной линии внутрь обусловлен
ростом цен; изменение ее наклона обусловлено изменением относительных
цен. Результатом профаммы индексации явилось бы такое увеличение выплат
из системы социального обеспечения, которое сделало бы исходный набор
(х\,х\) доступным по новым ценам. Но это означает, что бюджетная линия
пересекла бы кривую безразличия и на бюджетной линии появился бы какой-
то другой набор, который строго предпочитался бы набору (х*,**)- Следова-
156___________________________________Глава 7

тельно, как правило, в этом случае потребитель мог бы выбрать лучший набор,
чем в базисном году.

Краткие выводы
1. Если выбран один набор, в то время как мог бы быть выбран другой, мы
говорим, что первый набор выявление предпочитается второму.
2. Если потребитель всегда выбирает наиболее предпочитаемые наборы из
числа доступных, это означает, что выбранные наборы должны предпочи-
таться тем, которые были доступны, но не выбраны.
3. Наблюдение за выбором потребителей может позволить нам "восста-
новить", или оценить, предпочтения, скрывающиеся за этим выбором.
Чем больше случаев выбора мы наблюдаем, тем точнее можем оценить
предпочтения, породившие данный выбор.
4. Слабая аксиома выявленных предпочтений (WARP) и сильная аксиома
выявленных предпочтений (SARP) выступают необходимыми условиями,
которым должен удовлетворять выбор потребителя, чтобы быть совмести-
мым с экономической моделью оптимизации выбора.

ВОПРОСЫ ДЛЯ ПОВТОРЕНИЯ
1. Когда цены (р\, р?) = (1, 2), спрос потребителя задан набором (xi, #2) = (1. 2),
а когда цены (q\, qfi = (2, I), спрос потребителя задан набором (у\, у$ = (2, 1).
Совместимо ли такое поведение с моделью поведения, максимизирующего
полезность?
2. Когда цены (р\, PI) = (2, 1), спрос потребителя задан набором (х\, д/г) = (1. 2),
а когда цены (0ь 92)= (1> 2), спрос потребителя задан набором (у\, У2) = (2, 1).
Совместимо ли это поведение с моделью поведения, максимизирующего
полезность?
3. Исходя из условия предыдущего упражнения какой набор предпочитает
потребитель — х или у?
4. Как мы видели, вследствие корректировки выплат по социальному
обеспечению по мере изменения цен благосостояние получателей выплат,
как правило, по меньшей мере не ухудшается по сравнению с базисным
годом. Какого рода изменение цен, безусловно, не ухудшило бы благосо-
стояния получателей выплат независимо от того, каковы их предпочтения?
5. Исходя из контекста предыдущего вопроса при какого рода предпо-
чтениях благосостояние потребителя не изменялось бы по сравнению с
базисным годом независимо ни от каких изменений цен?

<< Предыдущая

стр. 3
(из 4 стр.)

ОГЛАВЛЕНИЕ

Следующая >>