<< Предыдущая

стр. 25
(из 44 стр.)

ОГЛАВЛЕНИЕ

Следующая >>


Рис. 6.11. Схема фильтрующего элемента
низкоскоростного тума-ноуловителя

Высо коскоростные туманоуловители имеют меньшие размеры и обеспечивают эффективность очистки, равную 0,9...0,98 при Д/»= 1500...2000 Па, от тумана с частицами менее 3 мкм. В качестве фильтрующей набивки в таких туманоуловителях используют войлоки из полипропиленовых волокон, которые успешно работают в среде разбавленных и концентрированных кислот и щелочей.
В тех случаях, когда диаметры капель тумана составляют 0,6...0,7 мкм и менее, для достижения приемлемой эффективности очистки приходится увеличивать скорость фильтрации до 4,5...5 м/с, что приводит к заметному брызгоуносу с выходной стороны фильтроэлемента (брыз-гоунос обычно возникает при скоростях 1,7...2,5 м/с). Значительно уменьшить брызгоунос можно применением брызгоуловителей в конструкции туманоуловителя. Для улавливания жидких частиц размером более 5 мкм применяют брызгоуловители из пакетов сеток, где захват частиц жидкости происходит за счет эффектов касания и инерционных сил. Скорость фильтрации в брызгоуловителях не должна превышать 6 м/с.
На рис. 6.12 показана схема высокоскоростного волокнистого туманоуловителя с цилиндрическим фильтрующим элементом 3, который представляет собой перфорированный барабан с глухой крышкой. В барабане установлен грубоволокнистый войлок толщиной 3...5 мм. Вокруг барабана по его внешней стороне расположен брызгоуловитель 7, представляющий собой набор перфорированных плоских и гофрированных слоев винипластовых лент. Брызгоуловитель и фильтроэле-мент нижней частью установлены в слой жидкости

Рис. 6.12. Схема высокоскоростного туманоуловителя

Для очистки аспирационного воздуха ванн хромирования, содержащего туман и брызги хромовой и серной кислот, применяют волокнистые фильтры типа ФВГ-Т. В корпусе размещена кассета с фильтрующим материалом — иглопробивным войлоком, состоящим из волокон диаметром 70 мкм, толщиной слоя 4...5 мм.
Метод абсорбции — очистка газовых выбросов от газов и паров — основан на поглощении последних жидкостью. Для этого используют абсорберы. Решающим условием для применения метода абсорбции является растворимость паров или газов в абсорбенте. Так, для удаления из технологических выбросов аммиака, хлоро- или фтороводорода целесообразно применять в качестве абсорбента воду. Для высокоэффективного протекания процесса абсорбции необходимы специальные конструктивные решения. Они реализуются в виде насадочных башен (рис. 6.13), форсуночных барботажно-пенных и других скрубберов. Описание процесса очистки и расчет аппаратов приведены в работе [6.11].

Р и с . 6.13. Схема насадочной башни:
1 — насадка; 2 — разбрызгиватель

Работа хемосорберов основана на поглощении газов и паров жидкими или твердыми поглотителями с образованием малорастворимых или малолетучих химических соединений. Основными аппаратами для реализации процесса являются насадочные башни, барботажно-пенные аппараты, скрубберы Вен-тури и т. п. Хемосорбция — один из распространенных методов очистки отходящих газов от оксидов азота и паров кислот. Эффективность очистки от оксидов азота составляет 0,17...0,86 и от паров кислот — 0,95.
Метод адсорбции основан на способности некоторых тонкодисперсных твердых тел селективно извлекать и концентрировать на своей поверхности отдельные компоненты газовой смеси. Для этого метода используют адсорбенты. В качестве адсорбентов, или поглотителей, применяют вещества, имеющие большую площадь поверхности на единицу массы. Так, удельная поверхность активированных углей достигает 105…106 м2/кг. Их применяют для очистки газов от органических паров, удаления неприятных запахов и газообразных примесей, содержащихся в незначительных количествах в промышленных выбросах, а также летучих растворителей и целого ряда других газов. В качестве адсорбентов применяют также простые и комплексные оксиды (активированный глинозем, силикагель, активированный оксид алюминия, синтетические цеолиты или молекулярные сита), которые обладают большей селективной способностью, чем активированные угли.
Конструктивно адсорберы выполняют в виде емкостей, заполнений пористым адсорбентом, через который фильтруется поток очищаемого газа. Адсорберы применяют для очистки воздуха от паров Растворителей, эфира, ацетона, различных углеводородов и т. п.
Адсорберы нашли широкое применение в респираторах и противогазах. Патроны с адсорбентом следует использовать строго в соответствии с условием эксплуатации, указанным в паспорте респиратора или противогаза. Так, фильтрующий противогазовый респиратор РПГ-67 (ГОСТ 12.4.004—74) следует использовать в соответствии с рекомендациями, приведенными в табл. 6.2 и 6.3.

Таблица 6.2.
Марки патронов респираторов РПГ-67

Марка патрона
Марка респиратора
Вредные вещества, от которых защищает респипяттд"'
А



В


КД
Г
РПГ-67А



РПГ-67В


РПГ-67КД
РПГ-67Г
Пары органических веществ (бензина, керосина, сероуглерода, ксилола, толуола, ацетона, спиртов, кетонов, эфиров, бензола и др.), хло&! и фосфорорганических ядохимикатов
Кислые газы (сернистый газ, сероводород, хлороводород и др.), пары хлор- и фосфорорганических ядохимикатов
Аммиак, сероводород и их смесь
Пары ртути и ртутьорганические соединения



Таблица 6.3.
Условия применения респираторов РПГ-67

Марка патрона
Вредные вещества
Концентрация, г/м3
Время защитного действия, мин, не менее
А
В
КД

Г
Бензол
Диоксид серы
Аммиак
Сероводород
Пары ртути
10
2
2
2
0,01
60
50
30
50
1200

Для очистки газов от паров растворителей с концентрацией более .0,3 г/м3 НИИОГАЗом разработан типовой ряд адсорберов АВКФ с производительностью по очищаемому газу 10, 20, 40 и 80 тыс. м3/ч.
Термическая нейтрализация основана на способности горючих газов и паров, входящих в состав вентиляционных или технологических выбросов, сгорать с образованием менее токсичных веществ. Для этого метода используют нейтрализаторы. Различают три схемы термической нейтрализации: прямое сжигание; термическое окисление; каталитическое дожигание.
Прямое сжигание используют в тех случаях, когда очищаемые газы обладают значительной энергией, достаточной для поддержания горения. Примером такого процесса является факельное сжигание горючих отходов. Так нейтрализуют циановодород в вертикально направленных факелах на нефтехимических заводах. Разработаны схемы камерного сжигания отходов. Такие дожигатели можно использовать для нейтрализации паров токсичных горючих или окислителей при их сдувах из емкостей.
Термическое окисление находит применение в тех случаях, когда очищаемые газы имеют высокую температуру, но не содержат достаточно кислорода или когда концентрация горючих веществ незначительна и недостаточна для поддержания пламени.
В первом случае процесс термического окисления проводят в камере с подачей свежего воздуха (дожигание оксида углерода и углеводородов), а во втором — при подаче дополнительно природного газа. Схема устройства для термического окисления выбросов показана на рис. 6.14.
Каталитическое дожигание используют для превращения токсичных компонентов, содержащихся в отходящих газах, в нетоксичные или менее токсичные путем их контакта с катализаторами. Для реализации процесса необходимо кроме катализаторов поддержание таких параметров газового потока, как температура и скорость газов.


Рис. 6.14. Схема установки для термического окисления:
I—входной патрубок; 2—теплообменник;
3 - горелка; 4 — камера; 5 — выходной патрубок

В качестве катализаторов используют платину, палладий, медь и др. Температуры начала каталитических реакций газов и паров изменяются в широких пределах—200...400°С. Объемные скорости процесса каталитического дожигания обычно устанавливают в пределах 2000...6000 ч-1 (объемная скорость—отношение скорости движения газов к объему катализаторной массы).
Каталитические нейтрализаторы применяют для обезвреживания оксида углерода, летучих углеводородов, растворителей, отработавших газов и т. п.
Термокаталитические реакторы с электроподогревом типа ТКРВ разработаны Дзержинским филиалом НИИОГАЗа. Они предназначены для очистки газовых выбросов сушильных камер окрасочных линий от органических веществ и других технологических производств.
Каталитическая нейтрализация отработавших газов ДВС на поверхности твердого катализатора происходит за счет химических превращений (реакции окисления или восстановления), в результате которых образуются безвредные или менее вредные для окружающей среды и здоровья человека соединения. Устройство и расчет нейтрализаторов отработавших газов ДВС даны в [6.9].
Оборудование, применяемое для очистки выбросов в машиностро-бнии и приборостроении, приведено в приложении 1.
Для высокоэффективной очистки выбросов необходимо применять аппараты многоступенчатой очистки. В этом случае очищаемые газы последовательно проходят несколько автономных аппаратов очистки или один агрегат, включающий несколько ступеней очистки. В системе последовательно соединенных аппаратов общая эффективность очистки

,

где з1, з2,…зn —эффективность очистки 1, 2 и n-го аппаратов.
Такие решения находят применение при высокоэффективной очистке газов от твердых примесей; при одновременной очистке от твердых и газообразных примесей; при очистке от твердых примесей и капельной жидкости и т. п. Многоступенчатую очистку широко применяют в системах очистки воздуха с его последующим возвратом в помещение (см. рис. 6.2, a).
Производство и применение очистного оборудования. Перечень газо- и туманоочистного оборудования, разработанного НИИОГАЗом, приведен в табл. 6.4.
Таблица 6.4.
Очистное оборудование НИИОГАЗа

Тип оборудования
Марка
Год выпуска
Улавливаемое вещество
Адсорбер






Термокаталитические реакторы



Электрофильтры

Волокнистые фильтры
АВП
АВКФя
СП
СДК
СПК-Б
АН

ТКРО

КР
КР-35
KРT-50
ЭВМ
ЭТМ
ФВГ-Т

ФВГ-С-Ц
ВВЦ-180
1986
1986
1987
1988
1988
1991

1989

1990
1991
1991
1990
1991
1983

1985
1990
Пары ртути
Органические растворители
Фтористые соединения, диоксид серы Тоже
Неприятно пахнущие вещества
Тоже

Углеводороды, оксид углерода, неприятно пахнущие вещества
Тоже
»
»
Смолистые вещества
Пары серной кислоты
Туман и брызги серной и хромовой кислоты
Цианистые соединения
Туманы масел

Конъюнктуру спроса и использования пылегазоочистного оборудования в различных отраслях промышленности можно проследить на примере рынка США. Расходы (млн. долл.) компаний США на защиту атмосферного воздуха в отдельных отраслях промышленности составили:

1986 г.

Теплоэнергетика ............................................................................ 1310
Нефтеперерабатывающая .............................................................. 459
Химическая ..................................................................................... 320
Горнодобывающая ......................................................................... 178
Целлюяозно-бумажная................................................................... 161
Металлургическая (черная и цветная) ........................................... 65
Автомобильная ............................................................................... 252
Машиностроение (общее) .............................................................. 69
Электротехническое машиностроение ......................................... 111
Приборостроение ............................................................................ 20
1987 г.

1053
427
438
181
196
76
154
134
25
32
19881

808
656
597
57
168
94
31
88
6
36

Для оценки конъюнктурного спроса на различные виды газопыле-очистного оборудования целесообразно ознакомиться с масштабами его производства в США в 1986 г.:


Электрофильтры ............
Число, шт.
168
Стоимость, млн.долл.
169,3
рукавные фильтры ...........
18172
154,9
Сухие пылеуловители .........
5508
25,9
Мокрые скрубберы ..........
1407
25,1
Каталитические дожигатели ......
555
14,6
Термические дожигатели . .......
308
JUO
20,3
Абсорберы ...............
627
12,5
Адсорберы ...............
46
3,3
Устройства для обессеривания . . . . .
122
165,2
Прочие ................
-
37,6

6.3. Состав и расчет выпусков сточных
вод в водоемы

В машиностроении источниками загрязнений сточных вод являются производственные, бытовые и поверхностные стоки.
Производственные сточные воды образуются в результате использования воды в технологических процессах. Типовой состав примесей сточных вод представлен в табл. 6.5. Сточные воды сварочных, монтажных, сборочных, испытательных цехов содержат механические примеси, маслопродукты, кислоты и тому подобные вещества в значительно меньших концентрациях, чем в рассмотренных видах цехов и участков. Наибольшую опасность в машиностроении представляют стоки гальванического производства.

Таблица 6.5.
Состав сточных вод [6.10]

Тип цеха, участка
Вид сточных вод
Основные примеси
Концентрация примесей, кг/м3
Температура сточных вод, °С
Металлургические
Литейные
От охлаждения печей

<< Предыдущая

стр. 25
(из 44 стр.)

ОГЛАВЛЕНИЕ

Следующая >>