<< Предыдущая

стр. 6
(из 44 стр.)

ОГЛАВЛЕНИЕ

Следующая >>


Рис 1.12. Схемы организации воздухообмена при
общеобменной вентиляции

Циркуляция воздуха в помещении и соответственно концентрация примесей и распределение параметров микроклимата зависит не только от наличия приточных и вытяжных струй, но и от их взаимного расположения. Различают четыре основные схемы организации воздухообмена при общеобменной вентиляции: сверху—вверх (рис. 1.12, о); сверху —вверх (рис. 1.12, б); снизу —вверх (рис. 1.12, в); снизу — вниз (рис. 1.12, г). Кроме этих схем применяют комбинированные. Наиболее равномерное распределение воздуха достигается в том случае, когда приток равномерен по ширине помещения, а вытяжка сосредоточена.
При организации воздухообмена в помещениях необходимо учитывать и физические свойства вредных паров и газов и в первую очередь их плотность. Если плотность газов ниже плотности воздуха, то удаление загрязненного воздуха происходит в верхней зоне, а подача свежего — непосредственно в рабочую зону. При выделении газов с плотностью большей плотности воздуха из нижней части помещения Удаляется 60...70 % и из верхней части 30...40 % загрязненного воздуха. В помещениях со значительными выделениями влаги вытяжка влажного воздуха осуществляется в верхней зоне, а подача свежего в количестве 60 % — в рабочую зону и 40 % -— в верхнюю зону.
По способу подачи и удаления воздуха различают четыре схемы jбщеобменной вентиляции (рис. 1.13): приточная, вытяжная, приточно-вытяжная и системы с рециркуляцией. По приточной системе воздух сдается в помещение после подготовки его в приточной камере. В мещении при этом создается избыточное давление, за счет которого воздух уходит наружу через окна, двери или в другие помещения. риточную систему применяют для вентиляции помещений, в которые елательно попадание загрязненного воздуха из соседних помещений или холодного воздуха извне.
Установки приточной вентиляции (рис. 1.13, а) обычно состоят из дующих элементов: воздухозаборного устройства 1 для забора чис того воздуха; воздуховодов 2, по которым воздух подается в помещение, фильтров 3 для очистки воздуха от пыли, калориферов 4, в которых подогревается холодный наружный воздух; побудителя движения 5, увлажнителя-осушителя б, приточных отверстий или насадков 7, через которые воздух распределяется по помещению. Воздух из помещения удаляется через неплотности ограждающих конструкций.



Рис. 1.13. Схемы общеобменной вещ» ляции:
а—приточная вентиляция; б—вытяж» вентиляция; в — приточно-вытяжная
вентиляция с рециркуляцией

Вытяжная система предназначена для удаления воздуха из помещения. При этом в нем создается пониженное давление и воздух соседних помещений или наружный воздух поступает в данное помещение. Вытяжную систему целесообразно применять в том случае, если вредные выделения данного помещения не должны распространяться на соседние, например, для вредных цехов, химических и биологических лабораторий.
Установки вытяжной вентиляции (рис. 1.13,6) состоят из вытяжных отверстий или насадков 8, через которые воздух удаляется из помещения; побудителя движения 5; воздуховодов 2, устройств для очистки воздуха от пыли или газов 9, устанавливаемых для защиты атмосферы, и устройства для выброса воздуха 10, которое располагается на 1...1.5 м выше конька крыши. Чистый воздух поступает в производственное помещение через неплотности в ограждающих конструкциях, что является недостатком данной системы вентиляции, так как неорганизованный приток холодного воздуха (сквозняки) может вызвать простудные заболевания.
Приточно-вытяжная вентиляция — наиболее распространенная система, при которой воздух подается в помещение приточной системой, а удаляется вытяжной; системы работают одновременно.
В отдельных случаях для сокращения эксплуатационных расходов на нагревание воздуха применяют системы вентиляции с частичной рециркуляцией (рис. 1.13, в). В них к поступающему снаружи воздуху подмешивают воздух, отсасываемый из помещения П вытяжной системой. Количество свежего и вторичного воздуха регулируют клапанами 11 и 12. Свежая порция воздуха в таких системах обычно составляет 20... 10 % общего количества подаваемого воздуха. Систему вентиляция с рециркуляцией разрешается использовать только для тех помещений, в которых отсутствуют выделения вредных веществ или выделяющиеся вещества относятся к 4-му классу опасности и концентрация их в воздуxe, подаваемом в помещение, не превышает 30 % ПДК. Применение рециркуляции не допускается и в том случае, если в воздухе помещений содержатся болезнетворные бактерии, вирусы или имеются резко выраженные неприятные запахи.
Отдельные установки общеобменной механической вентиляции могут не включать всех указанных выше элементов. Например, приточные системы не всегда оборудуются фильтрами и устройствами для изменения влажности воздуха, а иногда приточные и вытяжные установки могут не иметь сети воздуховодов.
Расчет потребного воздухообмена при общеобменной вентиляции производят исходя из условий производства и наличия избыточной теплоты, влаги и вредных веществ. Для качественной оценки эффективности воздухообмена применяют понятие кратности воздухообмена kВ — отношение объема воздуха, поступающего в помещение в единицу времени L (мУч), к объему вентилируемого помещения Vп (м3). При правильно организованной вентиляции кратность воздухообмена должна быть значительно больше единицы.
При нормальном микроклимате и отсутствии вредных выделений количество воздуха при общеобменной вентиляции принимают в зависимости от объема помещения, приходящегося на одного работающего. Отсутствие вредных выделений — это такое их количество в технологическом оборудовании, при одновременном выделении которых в воздухе помещения концентрация вредных веществ не превысит предельно допустимую. В производственных помещениях с объемом воздуха на каждого работающего Vпi < 20 м3 расход воздуха на одного работающего Li должен быть не менее 30 м/ч. В помещении с Vпi =20...40 м3 Lпi > 20 м3/ч. В помещениях с Vпi > 40 м3 и при наличии естественной вентиляции воздухообмен не рассчитывают. В случае отсутствия естественной вентиляции (герметичные кабины) расход воздуха на одного работающего должен составлять не менее 60 м3/ч.
Необходимый воздухообмен для всего производственного помещения в целом
L = nLi ,
где n — число работающих в данном помещении.
При определении потребного воздухообмена для борьбы с тепло-избытками составляют баланс явной теплоты помещения:



где ДQизб—избытки явной теплоты всего помещения, кВт; и —теплосодержание приточного и удаляемого воздуха, кВт; Ср — Удельная теплоемкость воздуха, кДж/(кг-°С); tпр и tух — температура приточного и уходящего воздуха, ?С.
В летнее время вся теплота, которая поступает в помещещ* является суммой теплоизбытков. В холодный период года часть теп ловыделений в помещении расходуется на компенсацию теплопотерь


Температура наружного воздуха в теплый период года принимается равной средней температуре самого жаркого месяца в 13 ч. Расчетные температуры для теплого и холодного периодов года приведены в СНиП 2.04.05—91. Температура удаляемого из помещения воздуха

где tрз —температура воздуха в рабочей зоне, °С; а — градиент температуры по высоте помещения, °С/м; для помещений с qя < 23 Вт/м3 можно применять а == 0,5 °С/м. Для «горячих» цехов с qя > 23 Вт/м - а = 0,7... 1,5 °С/м; Н— расстояние от пола до центра вытяжных отверстий, м.
Исходя из баланса явной теплоты помещения определяют необходимый воздухообмен (°С/ч) для ассимиляции теплоизбытков

где rпр — плотность приточного воздуха, кг/м3.

При определении необходимого воздухообмена для борьбы с вредными парами и газами составляют уравнение материального баланса вредных выделений в помещении за время dr (с):

где Gврdt—масса вредных выделений в помещении, обусловленных работой технологического оборудования, мг; Lпрспрdt — масса вредных выделений, поступающих в помещение вместе с приточным воздухом, мг; Lвсвdt—масса вредных выделений, удаляемых из помещения вместе с уходящим воздухом, мг; Vпdc dt с— масса вредных паров или газов, накопившихся в помещении за время dt; Спр и Св — концентрация вредных веществ в приточном и удаляемом воздухе, мг/м3.
При равенстве масс приточного и удаляемого воздуха и, принимая, что благодаря вентиляции вредные вещества не накапливаются в производственном помещении, т.е. dc/ dt = 0 и Св = спдк, получим L = (Gвр/спдк—Спр). Концентрация вредных веществ в удаляемом воздухе равна концентрации их в воздухе помещения и не должна превышать ПДК. Концентрация вредных веществ в приточном воздухе шать д быть по возможности минимальной и не превышать 30 % ПДК. ^Необходимый воздухообмен для удаления избыточной влаги опре-—»шт исходя из материального баланса по влаге

где Gвл - масса водяного пара, выделяющегося в помещение, г/с; rпр —плотность воздуха, поступающего в помещение, кг/м3; dyх —допустимое содержание водяного пара в воздухе помещения при нормативной температуре и относительной влажности воздуха, г/кг; dnp — влагосодержание приточного воздуха, г/кг.
При одновременном выделении в рабочую зону вредных веществ, не обладающих однонаправленным действием на организм человека, например теплоты и влаги, необходимый воздухообмен принимают по наибольшей массе воздуха, полученной в расчетах для каждого вида производственных выделений.
При одновременном выделении в воздух рабочей зоны нескольких вредных веществ однонаправленного действия (триоксид и диоксид серы; оксид азота совместно с оксидом углерода и др., см. СН 245—71) расчет общеобменной вентиляции надлежит производить путем суммирования объемов воздуха, необходимых для разбавления каждого вещества в отдельности до его условных предельно допустимых концентраций [с,], учитывающих загрязнения воздуха другими веществами. Эти концентрации меньше нормативных Спдк и определяются из уравнения .
С помощью местной вентиляции необходимые метеорологические параметры создаются на отдельных рабочих местах. Например, улавливание вредных веществ непосредственно у источника возникновения, вентиляция кабин наблюдения и т.д. Наиболее широкое распространение находит местная вытяжная локализующая вентиляция. Основной метод борьбы с вредными выделениями заключается в устройстве и организации отсосов от укрытий.
Конструкции местных отсосов могут быть полностью закрытыми, полуоткрытыми или открытыми (рис. 1.14). Наиболее эффективны закрытые отсосы. К ним относятся кожухи, камеры, герметично или плотно укрывающие технологическое оборудование (рис. 1.14, ж). Если такие укрытия устроить невозможно, то применяют отсосы с частичным укрытием или открытые: вытяжные зонты, отсасывающие панели, тяжные шкафы, бортовые отсосы и др.
Один из самых простых видов местных отсосов — вытяжной зонт (рис. 1.14, ж). Он служит для улавливания вредных веществ, имеющих меньшую плотность, чем окружающий воздух. Зонты устанавливают над ваннами различного назначения, электро- и индукционными печами и над отверстиями для выпуска металла и шлака из вагранок. Зонты делают открытыми со всех сторон и частично открытыми: с одной, двух и трех сторон. Эффективность работы вытяжного зонта зависит от размеров, высоты подвеса и угла его раскрытия. Чем больше размеры и чем ниже установлен зонт над местом выделения веществ, тем он эффективнее. Наиболее равномерное всасывание обеспечивается при угле раскрытия зонта менее 60°.
Отсасывающие панели применяют для удаления вредных выделений, увлекаемых конвективными токами, при таких ручных операциях, как электросварка, пайка, газовая сварка, резка металла и т.п. Вытяжные шкафы—наиболее эффективное устройство по сравнению с отсосами, так как почти полностью укрывают источник вредных веществ. Незакрытыми в шкафах остаются лишь проемы для обслуживания, через которые воздух из помещения поступает в шкаф. Форму проема выбирают в зависимости от характера технологических операций.
Необходимый воздухообмен в устройствах местной вытяжной венянии рассчитывают, исходя из условия локализации примесей, Являющихся из источника образования. Требуемый часовой объем всасываемого воздуха определяют как произведение площади приемных отверстий отсоса Г(м ) на скорость воздуха в них. Скорость воздуха проеме отсоса v (м/с) зависит от класса опасности вещества и типа воздухоприемника местной вентиляции (v = 0,5...5 м/с).
Смешанная система вентиляции является сочетанием элементов местной и общеобменной вентиляции. Местная система удаляет вредные вещества из кожухов и укрытий машин. Однако часть вредных веществ через неплотности укрытий проникает в помещение. Эта часть удаляется общеобменной вентиляцией.
Аварийная вентиляция предусматривается в тех производственных помещениях, в которых возможно внезапное поступление в воздухе большого количества вредных или взрывоопасных веществ. Производительность аварийной вентиляции определяют в соответствии с требованиями нормативных документов в технологической части проекта. Если такие документы отсутствуют, то производительность аварийной вентиляции принимается такой, чтобы она вместе с основной вентиляцией обеспечивала в помещении не менее восьми воздухообменов за 1 ч. Система аварийной вентиляции должна включаться автоматически при достижении ПДК вредных выделений или при остановке одной из систем общеобменной или местной вентиляции. Выброс воздуха аварийных систем должен осуществляться с учетом возможности максимального рассеивания вредных и взрывоопасных веществ в атмосфере.



Рис. 1.14. Устройства местной вентиляции:
а — укрытие-бокс; 6 — бортовые отсосы (1 — однобортовой; 2 —двухбортовой); в — боковые отсосы (1 – односторонний, 2 – угловой); г – отсос от рабочих столов; д - отсос витражного типа; е – вытяжные шкафы (1 – с верхним отсосом, 2 – с нижним отсосом, 3 – с комбинированным отсосом); ж — вытяжные зонты (/ — прямой; 2 — наклонный)

Для создания оптимальных метеорологических условий в производственных помещениях применяют наиболее совершенный вид промышленной вентиляции — кондиционирование воздуха. Кондиционированием воздуха называется его автоматическая обработка с целью поддержания в производственных помещениях заранее заданных метеорологических условий независимо от изменения наружных условий и режимов внутри помещения. При кондиционировании автоматически регулируется температура воздуха, его относительная влажность и скорость подачи в помещение в зависимости от времени года, наружых метеорологических условий и характера технологического процес-са в помещении. Такие строго определенные параметры воздуха создаются в специальных установках, называемых кондиционерами. В ряде случаев помимо обеспечения санитарных норм микроклимата воздуха в кондиционерах производят специальную обработку: ионизацию, дезодорацию, озонирование и т.п.




Рис. 1.15. Схема кондиционера:
/—заборный воздуховод; 2—фильтр; 3—соединительный воздуховод;
4—калориферы первой и второй ступени подогрева; 5—форсунки
воздухоочистки; 6—переходник-каплеуловитель; 7˜-калориферы второй
ступени; 8 — вентилятор; 9 — отводной воздуховод

Кондиционеры могут быть местными (для обслуживания отдельньк помещений) и центральными (для обслуживания нескольких отдельных помещений). Принципиальная схема кондиционера представлена на рис. 1.15. Наружный воздух очищается от пыли в фильтре 2 и поступает в камеру /, где он смешивается с воздухом из помещения (при рециркуляции). Пройдя через ступень предварительной температурной обработки 4, воздух поступает в камеру II, где он проходит специальную обработку (промывание воздуха водой, обеспечивающую заданные параметры относительной влажности, и очистку воздуха), и в камеру /// (температурная обработка). При температурной обработке зимой воздух подогревается частично за счет температуры воды, поступающей в форсунки 5, и частично, проходя через калориферы 4 и 7. Летом воздух охлаждается частично подачей в камеру //охлажденной (артезианской) воды, и главным образом в итоге работы специальных холодильных машин.
Кондиционирование воздуха играет существенную роль не только с точки зрения безопасности жизнедеятельности, но и во многих технологических процессах, при которых не допускаются колебания температуры и влажности воздуха (особенно в радиоэлектронике). Поэтому установки кондиционирования в последние годы находят все более широкое применение на промышленных предприятиях.



1.6. Влияние освещения на условия
деятельности человека

Основные светотехнические характеристики. Правильно спроектированное и рационально выполненное освещение производственных помещений оказывает положительное психофизиологическое воздействие на работающих, способствует повышению эффективности и безопасности труда, снижает утомление и травматизм, сохраняет высокую работоспособность.
Ощущение зрения происходит под воздействием видимого излучения (света), которое представляет собой электромагнитное излучение с длиной волны 0,38...0,76 мкм. Чувствительность зрения максимальна к электромагнитному излучению с длиной волны 0,555 мкм (желто-зеленый цвет) и уменьшается к границам видимого спектра.
Освещение характеризуется количественными и качественными казателями. К количественным показателям относятся:
световой поток Ф — часть лучистого потока, воспринимаемая человеком как свет; характеризует мощность светового излучения, измеряется в люменах (лм);
сила света J— пространственная плотность светового потока; определяется как отношение светового потока dФ, исходящего от источника и равномерно распространяющегося внутри элементарного телесного угла dW, к величине этого угла; J= dФ/dW ; измеряется в канделах (кд);
освещенность Е — поверхностная плотность светового потока; определяется как отношение светового потока dФ, равномерно падающего на освещаемую поверхность dS (м2), к ее площади: Е= dФ/dS; измеряется в люксах (лк);
яркость L поверхности под углом a к нормали — это отношение силы света dJa, излучаемой, освещаемой или светящейся поверхностью в этом направлении, к площади dS проекции этой поверхности, на плоскость, перпендикулярную к этому направлению; L = dJa/(dScosa), измеряется в кд·м-2.
Для качественной оценки условий зрительной работы используют такие показатели как фон, контраст объекта с фоном, коэффициент пульсации освещенности, показатель освещенности, спектральный состав света.
Фон — это поверхность, на которой происходит различение объекта. Фон характеризуется способностью поверхности отражать падающий на нее световой поток. Эта способность (коэффициент отражения r) определяется как отношение отраженного от поверхности светового потока Фотр к падающему на нее световому потоку Фпад; r= Фот/Фпад. B зависимости от цвета и фактуры поверхности значения коэффициента отражения находятся в пределах 0,02...0,95; при r >0,4 фон считается светлым; при r = 0,2...0,4—средним и при r <0,2—темным.
Контраст объекта с фоном k — степень различения объекта и фона .—характеризуется соотношением яркостей рассматриваемого объекта (точки, линии, знака, пятна, трещины, риски или других элементов) фона; считается большим, если k > 0,5 (объект резко выделяется на фоне), средним при k =0,2...0,5 (объект и фон заметно тличаются по яркости) и малым при k < 0,2 (объект слабо заметен на фоне).
Коэффициент пульсации освещенности kE — это критерий глубины колебаний освещенности в результате изменения во времени световою потока


где Emax, Emin, Еср —максимальное, минимальное и среднее значения освещенности за период колебаний; для газоразрядных ламп kE= 25...65 %, для обычных ламп накаливания kE » 7 %, для галогенных ламп накаливания kE = 1 %.
Показатель ослепленности Ро — критерий оценки слепящего действия, создаваемого осветительной установкой,

где V1 и V2 —видимость объекта различения соответственно при экранировании и наличии ярких источников света в поле зрения.
Экранирование источников света осуществляется с помощью щитков, козырьков и т.п.
Видимость Охарактеризует способность глаза воспринимать объект. Она зависит от освещенности, размера объекта, его яркости, контраста объекта с фоном, длительности экспозиции. Видимость определяется числом пороговых контрастов в контрасте объекта с фоном, т.е. Р= k/knop, где Ацор —пороговый или наименьший различимый глазом контраст, при небольшом уменьшении которого объект становится неразличим на этом фоне.
Системы и виды производственного освещения. При освещении производственных помещений используют естественное освещение, создаваемое прямыми солнечными лучами и рассеянным светом небосвода и меняющемся в зависимости от географической широты, времени года и суток, степени облачности и прозрачности атмосферы; искусственное освещение, создаваемое электрическими источниками света, и совмещенное освещение, при котором недостаточное по нормам естественное освещение дополняют искусственным.
Конструктивно естественное освещение подразделяют на боковое (одно- и двухстороннее), осуществляемое через световые проемы в наружных стенах; верхнее —через аэрационные и зенитные фонари, проемы в кровле и перекрытиях; комбинированное — сочетание верхнего и бокового освещения.
Искусственное освещение по конструктивному исполнению может быть двух видов —общее и комбинированное. Систему общего освещения применяют в помещениях, где по всей площади выполняются однотипные работы (литейные, сварочные, гальванические цехи), а также в административных, конторских и складских помещениях. Различают общее равномерное освещение (световой поток распределяется равномерно по всей площади без учета расположения рабочих мест) и общее локализованное освещение (с учетом расположения рабочих мест).
При выполнении точных зрительных работ (например, слесарных, токарных контрольных) в местах, где оборудование создает глубокие, резкие тени или рабочие поверхности расположены вертикально (штампы, гильотинные ножницы), наряду с общим освещением применяют местное.
Совокупность местного и общего освещения называется комбинированным освещением. Применение одного местного освещения внутри производственных помещений не допускается, поскольку образуются резкие тени, зрение быстро утомляется и создается опасность производственного травматизма.
По функциональному назначению искусственное освещение под-разделяют на рабочее, аварийное и специальное, которое может быть охранным, дежурным, эвакуационным, эритемным, бактерицидным и др.
Рабочее освещение предназначено для обеспечения нормального выполнения производственного процесса, прохода людей, движения транспорта и является обязательным для всех производственных помещений.
Аварийное освещение устраивают для продолжения работы в тех случаях, когда внезапное отключение рабочего освещения (при авариях) и связанное с этим нарушение нормального обслуживания оборудования могут вызвать взрыв, пожар, отравление людей, нарушение технологического процесса и т.д. Минимальная освещенность рабочих поверхностей при аварийном освещении должна составлять 5 % нормируемой освещенности рабочего освещения, но не менее 2 лк.
Эвакуационное освещение предназначено для обеспечения эвакуации людей из производственного помещения при авариях и отключении рабочего освещения; организуется в местах, опасных для прохода людей: на лестничных клетках, вдоль основных проходов производственных помещений, в которых работают более 50 чел. Минимальная освещенность на полу основных проходов и на ступеньках при эвакуационном освещении должна быть не менее 0,5 лк, на открытых территориях —не менее 0,2 лк.
Охранное освещение устраивают вдоль границ территорий, охраняемых специальным персоналом. Наименьшая освещенность в ночное время 0,5 лк.
Сигнальное освещение применяют для фиксации границ опасных эон; оно указывает на наличие опасности, либо на безопасный путь эвакуации.
Условно к производственному освещению относят бактерицидное эритемное облучение помещений. Бактерицидное облучение («освещение») создается для обеззараживания воздуха, питьевой воды, продуктов питания. Наибольшей бактерицидной способностью обладают ультрафиолетовые лучи с l = 0,254…0,257 мкм. Эритемное облучение создается в производственных помещениях, где недостаточно солнечого света (северные районы, подземные сооружения). Максимальное эритемное воздействие оказывают электромагнитные лучи l = 0,297 мкм. Они стимулируют обмен веществ, кровообращение0 дыхание и другие функции организма человека.
Основные требования к производственному освещению. Основной задачей производственного освещения является поддержание на рабочем месте освещенности, соответствующей характеру зрительной ра^ боты. Увеличение освещенности рабочей поверхности улучшает видимость объектов за счет повышения их яркости, увеличивает скорость различения деталей, что сказывается на росте производительности труда. Так, при выполнении отдельных операций на главном конвейере сборки автомобилей при повышении освещенности с 30 до 75 лк производительность труда повысилась на 8 %. При дальнейшем повышении до 100 лк —на 28 % (по данным проф. А.Л. Тарханова). Дальнейшее повышение освещенности не дает роста производительности.
При организации производственного освещения необходимо обеспечить равномерное распределение яркости на рабочей поверхности и окружающих'предметах. Перевод взгляда с ярко освещенной на слабо освещенную поверхность вынуждает глаз переадаптироваться, что ведет к утомлению зрения и соответственно к снижению производительности труда. Для повышения равномерности естественного освещения больших цехов осуществляется комбинированное освещение. Светлая окраска потолка, стен и оборудования способствует равномерному распределению яркостей в поле зрения работающего.
Производственное освещение должно обеспечивать отсутствие в поле зрения работающего резких теней. Наличие резких теней искажает размеры и формы объектов различения и тем самым повышает утомляемость, снижает производительность труда. Особенно вредны движущиеся тени, которые могут привести к травмам. Тени необходимо смягчать, применяя, например, светильники со светорассеивающими молочными стеклами, при естественном освещении, используя солнцезащитные устройства (жалюзи, козырьки и др.).
Для улучшения видимости объектов в поле зрения работающего должна отсутствовать прямая и отраженная блескость. Блескость— это повышенная яркость светящихся поверхностей, вызывающая нарушение зрительных функций (ослепленность), т.е. ухудшение видимости объектов. Блескость ограничивают уменьшением яркости источника света, правильным выбором защитного угла светильника, увеличением высоты подвеса светильников, правильном направлением светового потока на рабочую поверхность, а также изменением ул& наклона рабочей поверхности. Там, где это возможно, блестящи® поверхности следует заменять матовыми.
Колебания освещенности на рабочем месте, вызванные, например. резким изменением напряжения в сети, обусловливают переадаптацию глаза, приводя к значительному утомлению. Постоянство освещенности во времени достигается стабилизацией плавающего напряжения, жестким креплением светильников, применением специальных схем включения газоразрядных ламп.
Ппи организации производственного освещения следует выбирать видимый спектральный состав светового потока. Это требование особенно существенно для обеспечения правильной цветопередачи, а в отдельных случаях для усиления цветовых контрастов. Оптимальный спектральный состав обеспечивает естественное освещение. Для создания правильной цветопередачи применяют монохроматический свет, усиливающий одни цвета и ослабляющий другие.
Осветительные установки должны быть удобны и просты в эксплуатации, долговечны, отвечать требованиям эстетики, элекгробезопас-ности а также не должны быть причиной возникновения взрыва или пожара. Обеспечение указанных требований достигается применением защитного зануления или заземления, ограничением напряжения питания переносных и местных светильников, защитой элементов осветительных сетей от механических повреждений и т.п.
Нормирование производственного освещения. Естественное и искусственное освещение в помещениях регламентируется нормами СНиП 23-05—95 в зависимости от характера зрительной работы, системы и вида освещения, фона, контраста объекта с фоном. Характеристика зрительной работы определяется наименьшим размером объекта различения (например, при работе с приборами—толщиной линии градуировки шкалы, при чертежных работах —толщиной самой тонкой линии). В зависимости от размера объекта различения все виды работ, связанные со зрительным напряжением, делятся на восемь разрядов, которые в свою очередь в зависимости от фона и контраста объекта с фоном делятся на четыре подразряда.
Искусственное освещение нормируется количественными (минимальной освещенностью Emin) и качественными показателями (показателями ослепленности и дискомфорта, коэффициентом пульсации освещенности kЕ. Принято раздельное нормирование искусственного освещения в зависимости от применяемых источников света и системы освещения. Нормативное значение освещенности для газоразрядных ламп при прочих равных условиях из-за их большей светоотдачи выше, чем для ламп накаливания. При комбинированном освещении доля общего освещения должна быть не менее 10 % нормируемой освещенности. Эта величина должна быть не менее 150 лк для газоразрядных ламп и 50 лк для ламп накаливания.
Для ограничения слепящего действия светильников общего освещения в производственных помещениях показатель ослепленности не должен превышать 20...80 единиц в зависимости от продолжительности и разряда зрительной работы. При освещении производственных помещений газоразрядными лампами, питаемыми переменным током промышленной частоты 50 Гц, глубина пульсаций не должна превышать 10...20 % в зависимости от характера выполняемой работы.
При определении нормы освещенности следует учитывать также ряд условий, вызывающих необходимость повышения уровня освещенности, выбранного по характеристике зрительной работы. Увеличение освещенности следует предусматривать, например, при повышенной опасности травматизма или при выполнении напряженной зрительной работы I...IV разрядов в течение всего рабочего дня. В некоторых, случаях следует снижать норму освещенности, например, при кратковременном пребывании людей в помещении.
Естественное освещение характеризуется тем, что создаваемая освещенность изменяется в зависимости от времени суток, года, метеорологических условий. Поэтому в качестве критерия оценки естественного освещения принята относительная величина—коэффициент естественной освещенности КЕО, не зависящий от вышеуказанных параметров. КЕО —это отношение освещенности в данной точке внутри помещения Евн к одновременному значению наружной горизонтальной освещенности Ен, создаваемой светом полностью открытого небосвода, выраженное в процентах, т.е. КЕО = 100·Евн/Ен.
Принято раздельное нормирование КЕО для бокового и верхнего естественного освещения. При боковом освещении нормируют минимальное значение КЕО в пределах рабочей зоны, которое должно быть обеспечено в точках, наиболее удаленных от окна; в помещениях с верхним и комбинированным освещением —по усредненному КЕО в пределах рабочей зоны. Нормированное значение КЕО с учетом характеристики зрительной работы, системы освещения, района расположения зданий на территории страны
ен = КЕОmc,
где КЕО — коэффициент естественной освещенности; определяется по СНиП 23-05—95; т —коэффициент светового климата, определяемый в зависимости от района расположения здания на территории страны; с — коэффициент солнечности климата, определяемый в зависимости от ориентации здания относительно сторон света; коэффициенты m и с определяют по таблицам СНиП 23-05—95.
Совмещенное освещение допускается для производственных помещений, в которых выполняются зрительные работы I и II разрядов; для производственных помещений, строящихся в северной климатической зоне страны; для помещений, в которых по условиям технологии требуется выдерживать стабильными параметры воздушной среды (участки прецизионных металлообрабатывающих станков, электропрецизионного оборудования). При этом общее искусственное освещение помещений должно обеспечиваться газоразрядными лампами, а нормы освещенности повышаются на одну ступень.
Источники света и осветительные приборы. Источники света, применяемые для искусственного освещения, делят на две группы - газоразрядные лампы и лампы накаливания. Лампы накаливания относятся к источникам света теплового излучения. Видимое излучение в них получается в результате нагрева электрическим током вольфрамовой нити. В газоразрядных лампах излучение оптического диапазона спектра возникает в результате электрического разряда в атмосфере инертных газов и паров металлов, а также за счет явлений люминесценции, которое невидимое ультрафиолетовое излучение преобразует в видимый свет.
При выборе и сравнении источников света друг с другом пользуются следующими параметрами: номинальное напряжение питания U (В), электрическая мощность лампы Р (Вт); световой поток, излучаемый пампой Ф (лм), или максимальная сила света J(кд); световая отдача y = Ф/Р (лм/Вт), т.е. отношение светового потока лампы к ее электрической мощности; срок службы лампы и спектральный состав света.
Благодаря удобству в эксплуатации, простоте в изготовлении, низкой инерционности при включении, отсутствии дополнительных пусковых устройств, надежности работы при колебаниях напряжения и при различных метеорологических условиях окружающей среды лампы накаливания находят широкое применение в промышленности. Наряду с отмеченными преимуществами лампы накаливания имеют и существенные недостатки: низкая световая отдача (для ламп общего назначения y = 7...20 лм/Вт), сравнительно малый срок службы (до 2,5 тыс. ч), в спектре преобладают желтые и красные лучи, что сильно отличает их спектральный состав от солнечного света.
В последние годы все большее распространение получают галогеновые лампы —лампы накаливания с йодным циклом. Наличие в колбе паров иода позволяет повысить температуру накала нити, т.е. световую отдачу лампы (до 40 лм/Вт). Пары вольфрама, испаряющиеся с нити накаливания, соединяются с иодом и вновь оседают на вольфрамовую спираль, препятствуя распылению вольфрамовой нити и увеличивая срок службы лампы до 3 тыс. ч. Спектр излучения галогеновой лампы более близок к естественному.
Основным преимуществом газоразрядных ламп перед лампами накаливания является большая световая отдача 40...110 лм/Вт. Они имеют значительно большой срок службы, который у некоторых типов ламп достигает 8...12 тыс. ч. От газоразрядных ламп можно получить световой поток любого желаемого спектра, подбирая соответствующим образом инертные газы, пары металлов, люминоформ. По спектральому составу видимого света различают лампы дневного света (ЛД), дневдого света с улучшенной цветопередачей (ЛЛД), холодного белого (ЛХБ), теплого белого (ЛТБ) и белого цвета (ЛБ).
Основным недостатком газоразрядных ламп является пульсация светового потока, что может привести к появлению стробоскопического эффекта, заключающегося в искажении зрительного восприятия. При кратности или совпадении частоты пульсации источника света и обрабатываемых изделий вместо одного предмета видны изображения нескольких, искажается направление и скорость движения, что делает невозможным выполнение производственных оп раций и ведет к увеличению опасности травматизм К недостаткам газоразрядных ламп следует отнести также длительный период разгорания, необходимость применения специальных пусковых присгкк соблений, облетающих зажигание ламп; зависимость работоспособности от температуры окружающей среды. Газоразрядные лампы могут создавать радиопомехи исключение которых требует специальных устройств.


Рис. 1.16. Кривые распределения силы света в пространстве:
/—широкая; 2—равномерная; 3—глубокая

При выборе источников света для производственных помещений необходимо руководствоваться общими рекомендациями: отдавать предпочтение газоразрядным лампам как энергетически более экономичным и обладающим большим сроком службы; для уменьшения первоначальных затрат на осветительные установки и расходов на их эксплуатацию необходимо по возможности использовать лампы наименьшей мощности, но без ухудшения при этом качества освещения.
Создание в производственных помещениях качественного и эффективного освещения невозможно без рациональных светильников. Электрический светильник — это совокупность источника света и осветительной арматуры, предназначенной для перераспределения излучаемого источником светового потока в требуемом направлении, предохранения глаз рабочего от слепящего действия ярких элементов источника света, защиты источника от механических повреждений, воздействия окружающей среды и эстетического оформления помещения.
Для характеристики светильника с точки зрения распределения светового потока в пространстве строят график силы света в полярной системе координат (рис. 1.16). Степень предохранения глаз работников от слепящего действия источника света определяют защитным углом светильника. Защитный угол — это угол между горизонталью и линией, соединяющей нить накала (поверхность лампы) с противопо^ ложным краем отражателя (рис. 1.17). Важной характеристикой светильника является его коэффициент полезного действия — отношение фактического светового потока светильника Фф к световому потоку помещенной в него лампы Фп, т.е. hсв = Фф/Фп.
По распределению светового потока в пространстве различают светильники прямого, преимущественно прямого, рассеянного, отраженного и преимущественно отраженного света. Конструкция светильника должна надежно защищать источник света от пыли, воды и других внешних факторов, обеспечивать электро-, пожаро- и взрывобезопасность, стабильность светотехнических характеристик в данных условиях виях среды, удобство монтажа, соответствовать эстетическим требованиям. В зависимости от конструктивного исполнения различают светильники открытые, защищенные, закрытые, пыленепроницаемые, влагозащитные, взрывозащищенные, взрывобезопасные. На рис. 1.18 приведены некоторые наиболее распространенные типы светильников (а—д —для ламп накаливания, е—ж —для газоразрядных ламп).


Рис. 1 17. Защитный угол светильника:
а — с лампой накаливания; б —с люминесцентными лам-памн



Рис. 1.18. Основные типы светильников:
а—«Универсаль»; б—«Глубокоизлучатель»; в—«Люцета»; г— «Молочный шарик»; д — взрывобезопасный типа ВЗГ; е — типа ОД; ж—типа ПВЛП

Расчет производственного освещения. Основной задачей светотехнических расчетов является: для естественного освещения определение необходимой площади световых проемов; для искусственного — требуемой мощности электрической осветительной установки для создания заданной освещенности.
При естественном боковом освещении требуемая площадь световых проемов (м2)



где Sп—площадь пола помещений, м2; eок—коэффициент световой активности оконного проема; kзд — коэффициент, учитывающий затенение окон противостоящими зданиями; kз — коэффициент запаса; определяется с учетом запыленности помещения, расположения стекол (наклонно, горизонтально, вертикально) и периодичности очистки; r - коэффициент, учитывающий влияние отраженного света; определяется с учетом геометрических размеров помещения, светопроема и эначений коэффициентов отражения стен, потолка, пола; tобщ—общий коэффициент светопропускания; определяется в зависимости от коэффициента светопропускания стекол, потерь света в переплетах окон, слоя его загрязнения, наличия несущих и солнцезащитных конструкций перед окнами.
При выбранных светопроемах действительные значения коэффициента естественного освещения для различных точек помещений рассчитывают с использованием графоаналитического метода Дани люка по СНиП 23-05—95.
При проектировании искусственного освещения необходимо вы. брать тип источника света, систему освещения, вид светильника-наметить целесообразную высоту установки светильников и размещения их в помещении; определить число светильников и мощность ламп необходимых для создания нормируемой освещенности на рабочем месте, и в заключение проверить намеченный вариант освещения на соответствие его нормативным требованиям.
Расчет общего равномерного искусственного освещения горизонтальной рабочей поверхности выполняется методом коэффициента использования светового потока. Световой поток (лм) одной лампы или группы люминисцентных ламп одного светильника



где Eн — нормируемая минимальная освещенность по СНиП 23-05—95, лк; S—площадь освещаемого помещения, м2; z —коэффициент неравномерности освещения, обычно z = 1,1 - 1,2; kз —коэффициент запаса, зависящий от вида технологического процесса и типа применяемых источников света, обычно kз = 1,3 - 1,8; п —число светильников в помещении; hи — коэффициент использования светового потока.
Коэффициент использования светового потока, давший название методу расчета, определяют по СНиП 23-05—95 в зависимости от типа светильника, отражательной способности стен и потолка, размеров помещения, определяемых индексом помещения



где А, В — длина и ширина помещения в плане, м; Н — высота подвеса светильников над рабочей поверхностью, м.
По полученному в результате расчета световому потоку по ГОСТ 2239—79* и ГОСТ 6825—91 выбирают ближайшую стандартную лампу и определяют необходимую электрическую мощность. При выборе лампы допускается отклонение светового потока от расчетного в пределах 10.-.20 %.
Для поверочного расчета местного освещения, а также для расчета освещенности конкретной точки наклонной поверхности при общем локализованном освещении применяют точечный метод. В основу точечного метода положено уравнение

где ЕА — освещенность горизонтальной поверхности в расчетной точке А, лк; Ja — сила света в направлении от источника к расчетной точке А; определяется по кривой распределения светового потока выбираемого светильника и источника света; a — угол между нормалью к поверхности, которой принадлежит точка, и направлением вектора силы света в точку А; r —расстояние от светильника до точки А, м.
Учитывая, что r = H/cosa и вводя коэффициент запаса kз, получим



Критерием правильности расчета служит неравенство ЕА і Ен.
Цветовое оформление производственного интерьера. Рациональное етовое оформление производственного интерьера —действенный диктор улучшения условий труда и жизнедеятельности человека. Усыновлено, что цвета могут воздействовать на человека по-разному: одни цвета успокаивают, а другие раздражают. Например, красный цвет - возбуждающий, горячий, вызывает у человека условный рефлекс направленный на самозащиту. Оранжевый воспринимается людьми так же как горячий, он согревает, бодрит, стимулирует к активной деятельности. Желтый—теплый, веселый, располагает к хорошему настроению. Зеленый — цвет покоя и свежести, успокаивающе действует на нервную систему, а в сочетании с желтым благотворно влияет на настроение. Синий и голубой цвета свежи и прозрачны, кажутся легкими, доздушными. Под их воздействием уменьшается физическое напряжение, они могут регулировать ритм дыхания, успокаивать пульс. Черный цвет—мрачный и тяжелый, резко снижает настроение. Белый цвет —холодный, однообразный, способный вызывать апатию.
Разностороннее эмоциональное воздействие цвета на человека позволяет широко использовать его в гигиенических целях. Поэтому при оформлении интерьера производственного помещения цвет используют как композиционное средство, обеспечивающее гармоническое единство помещения и технологического оборудования, как фактор, создающий оптимальные условия зрительной работы и способствующий повышению работоспособности; как средство информации, ориентации и сигнализации для обеспечения безопасности труда.
Поддержание рациональной цветовой гаммы в производственных помещениях достигается правильным выбором осветительных установок, обеспечивающих необходимый световой спектр. В процессе эксплуатации осветительных установок необходимо предусматривать Регулярную очистку от загрязнений светильников и остекленных проемов, своевременную замену отработавшей свой срок службы лампы, онтроль напряжений питания осветительной сети, регулярную и Рациональную окраску стен, потолка, оборудования.
Сроки очистки светильников и остекления зависят от степени запыленности помещения: для помещений с незначительными выделениями пыли —2 раза в год; со значительным выделением пыли— 4…12 раз в год. Для удобства и безопасности очистки осветительных установок применяют передвижные тележки, телескопические лестницы, подвесныеные люльки. При высоте подвеса светильников до 5 м допускается обслуживание их с приставных лестниц и стремянок.
Очищать светильники следует при отключенном питании.


































2. НЕГАТИВНЫЕ ФАКТОРЫ
ТЕХНОСФЕРЫ

2.1. Загрязнение регионов техносферы
токсичными веществами

Регионы техносферы и природные зоны, примыкающие к очагач техносферы, постоянно подвергаются активному загрязнению различными веществами и их соединениями.
Загрязнение атмосферы. Атмосферный воздух всегда содержит некоторое количество примесей, поступающих от естественных и антро. погенных источников. К числу примесей, выделяемых естественными источниками, относят: пыль (растительного, вулканического, космического происхождения, возникающую при эрозии почвы, частицы морской соли); туман; дым и газы от лесных и степных пожаров; газы вулканического происхождения; различные продукты растительного животного происхождения и др.
Естественные источники загрязнений бывают либо распределенными, например выпадение космической пыли, либо локальными, например лесные и степные пожары, извержения вулканов. Уровень загрязнения атмосферы естественными источниками является фоновым и мало изменяется с течением времени.
Основное антропогенное загрязнение атмосферного воздуха создают автотранспорт, теплоэнергетика и ряд отраслей промышленности (табл. 2.1).
Таблица 2.1.
Выбросы загрязняющих веществ в атмосферу Российской Федерации, тыс. т [2.2]

Источники выбросов
1992 г.
1996 г.
Теплоэлектростанции
Металлургические предприятия
Нефтяная и газовая промышленность
Химическая промышленность
Производства, выпускающие строительные материалы
Предприятия, перерабатывающие древесину
Автотранспорт
6645
8218
4532
1000
1386

751
-
4748
6133
2699
454
528

434
10955

Самыми распространенными токсичными веществами, загрязняющими атмосферу, являются: оксид углерода СО, диоксид серы SО2, оксиды азота NOх, углеводороды СnНm, и пыль. Основные источники примесей атмосферы и их ежегодные выбросы приведены в табл. 2.2 и 2.3.


Таблицаа 2.2.
Источники выбросов веществ в атмосферу


Примеси
Основные источники

Среднегодовая концентрация в воздухе, мг/м

<< Предыдущая

стр. 6
(из 44 стр.)

ОГЛАВЛЕНИЕ

Следующая >>