<< Предыдущая

стр. 26
(из 46 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

Отмечено, что в период опоры ЦТ снижается, а в фазе отталкивания — поднимается. Вертикальное снижение во время периода опоры не такое большое, как вертикальное падение в фазе полета.
Маховое движение ноги (В). Анализ бега спринтеров показывает, что когда маховая конечность движется вперед, то сгибание колена и пронос пятки выполняются бегуном ближе к тазу. Второй характерной чертой является высокий подъем колена; бедро! поворачивается до горизонтали перед телом в момент, когда противоположная опорная нога покидает землю (F.C. Clouse, 1959; J. Dittmer, 1962;W.O.Fenn, 1931;D. Slocum, S.L. James, 1968 и др.). Угол между бедром и горизонталью, проведенной через тазобедренный сустав, становится меньше, когда бедро поднимается ближе к горизонтали.
Движение ноги при беге можно разделить на две фазы. Во время контакта с землей нога поддерживает тело и выталкивает его вперед. После отталкивания нога движется из положения сзади ,в положение впереди туловища — эта фаза маха (переноса) или фаза возвращения ноги.
Когда стопа касается земли, суставы ноги (тазобедренный, коленный, голеностопный) кратковременно сгибаются, амортизируя приземляющееся тело. Как только тело продвинулось достаточно вперед, конечность разгибается, двигая тело вверх и вперед.
Длительность сгибания и разгибания колена во время периода опоры уменьшается при увеличении скорости. Обнаружено, что во время опоры высококвалифицированные бегуны полностью и быстро разгибают тазобедренный сустав, делая это раньше, чем стопа покидает землю (точку опоры, место отталкивания).
Обнаружено, что при максимальном проталкивании высококвалифицированный спортсмен выносит коленный сустав маховой ноги вверх-вперед тела.
В начале фазы маха, когда бедро быстро сгибается в тазобедренном суставе, происходит также быстрое сгибание голени в коленном суставе.
Длина и частота шага (Г). Поскольку скорость бега равна произведению длины на частоту шагов, C.J. Dillman (1970) отметил, что длина шага от отрыва правой ноги до отрыва левой ноги во всех случаях превышала 192 см.
Частота шага увеличивается со скоростью бега и она выше в короткий период начального ускорения, чем при беге на дистанции. Но линейная зависимость между частотой шага и скоростью бега наблюдается лишь до скорости примерно 6,1м/с, увеличение скорости за этой точкой происходило больше за счет частоты, чем длины шага (W. Fenn, 1930; P. Hogberg, 1952; R. Osterhoudt, 1969 и др.).
G.H. Dyson (1971) показал, что частота шага соревнующихся спортсменов высокого класса меняется в пределах 4,5—5,0 шагов в секунду.
На рис. 15.24 показана связь между длиной одиночного шага и скоростью бега. Кривая рисунка показывает, что при низких скоростях (3,5—6,5 м/с) длина шага увеличивается практически линейно по мере того, как дискретно растет скорость. При больших скоростях по мере того, как бегун дискретно увеличивает скорость бега, длина одиночного шага меняется относительно мало, а некоторые исследователи сообщают о небольшом уменьшении длины шага при максимальных скоростях (пунктирная линия на рис. 15.24). С ростом скорости частота одиночных шагов увеличивается. На рис. 15.25 показана зависимость между частотой шагов и скоростью. В зоне низких скоростей (3—6 м/с) отмечается небольшое увеличение частоты шагов по мере дискретного возрастания скорости. Если же скорость увеличивается от умеренно быстрой до максимальной (6—9 м/с), наблюдается пропорционально большее увеличение частоты шагов.


Рис. 15.24. Зависимость между длиной шага и горизонтальной скоростью бега (М. Saito et al, 1974; C.W. Buchanan, 1971; R.G. Osterhoudt, 1968)

Наблюдения показывают, что при одной и той же скорости лучшие бегуны имеют более низкую частоту шагов.
Вертикальные движения центра тяжести (ЦТ) (Д). Центр тяжести (ЦТ) тела при беге движется по волнообразной колебательной кривой (M.G. Beck, 1966; F.C. Clause, 1959 и др.).С увеличением скорости бега величина подъема тела, или вертикальное перемещение ЦТ, становится меньше, тогда как горизонтальное перемещение увеличивается. ЦТ движется вверх, пока нога выпрямляется в фазе опоры, и достигает максимальной высоты в момент отрыва от земли непосредственно после нее. Затем ЦТ движется вниз и вперед, достигая низшей точки непосредственно после касания земли опорной ноги (см. рис. 15.23, a). W.O. Fenn (1930) нашел, что общий подъем ЦТ у взрослых спринтеров-мужчин за время опоры равен примерно 6 см.


Рис. 15.25. Зависимость между частотой шагов и скоростью бега (М. Saito etal, 1974; C.W. Buchanan, 1971; R.G. Osterhoudt, 1968)

Положение туловища (Е). Наклон корпуса способствует более сильному проталкиванию вперед, вот почему спринтеры стартуют с колодок и низкого старта (рис. 15.26). Наклон туловища у ряда выдающихся спринтеров по данным R. Wickstzom (1970) лежал в пределах 12—20° с тенденцией уменьшения (см. рис. 8.8, 8.9).
М. Gagnon (1969) определил, что лучшее время на первых 2,3 и 5,5 метра от стартовой линии достигалось в том случае, когда соответствующие расстояния были предельно малыми. Расположение центра тяжести в стартовой позиции возможно ближе к стартовой линии оказалось фактором, наиболее тесно связанным со временем, требующимся на преодоление первых 5,5 м. R.A. Desrochers (1963), М. Gagnon (1969) обнаружили, что различия в расположении колодок влияют на длину и длительность первого шага, но не последующих.

Рис. 15.26. Низкий старт Р. Хейеса

Кинематические факторы бега. Факторы, влияющие на скорость бега, разнообразны. Так, при беге на короткие дистанции важным является стартовое ускорение и поддерживание максимальной скорости до конца бега. А при беге на длинные дистанции спортсмен должен бежать со скоростью, которая обеспечит ему возможность сохранить достаточно энергии, чтобы закончить дистанцию.
При беге с определенной скоростью спортсмен выбирает определенную длину и скорость одиночных шагов, так что комбинация этих двух величин создает (определяет) желаемую скорость.
Например, если длина шага спортсмена 2 метра и частота шагов 3 шага в секунду, его средняя скорость за один шаг будет 6м/с.
В табл. 15.1 приведены качественная оценка и спортивные достижения для ряда скоростей бега человека.
Таблица 15.1
Оценка скорости бега
Качественное описание (взрослые мужчины)
Скорость м/с
Эквивалентная скорость футы/с
Время бега на 1 милю* (1609,3 м)
Время бега на 100 ярдов* (91,44 м)
Медленная
4
13,2
6: 42

ДО
5
16,40
5:22

умеренно быстрой Быстрая
6 8
19,69 26,25
4:28
11,4
до
9
29,53

10,2
спринтерский
10
32,81

9,1
* Вычисление основано на том, что вся дистанция преодолевается при постоянной скорости.
Антропометрические показатели и длина шагов. Длина ног существенно влияет на величину одиночного шага. В табл. 15.2 приведены данные зависимости между длиной тела и ног, с одной стороны, и длиной одиночного шага — с другой.
Таблица 15.2
Корреляция между длиной тела, длиной ноги и длиной шага
Исследователь
Количество испытуемых
Длина тела с длиной шага
Длина ноги с длиной шага
Ромпотти (1956)
40 (мужчины)
0,71
0,54
Ромпотти (1956)
12 (мужчины)
0,50
0,60
Гоффманн (1964)
56 (мужчины)
0,59
0,70
Гоффманн (1967)
23 (женщины)
0,63
0,73

К. Rompott (1956) обнаружил низкую отрицательную зависимость между длиной шага и весом тела, равную 0,20. К. Hoffmann (1964) отметил зависимость между максимальной длиной одиночного шага, с одной стороны, и ростом и длиной ноги — с другой.
Результаты этих исследований свидетельствуют, что имеется выраженная корреляция между ростом, длиной ноги и величиной одиночного шага.
Возрастная биомеханика. Возрастные локомоции. У новорожденных двигательный аппарат имеет определенную степень зрелости, что позволяет выполнять целый ряд простейших движений (рис. 15.27).
В первые недели жизни у ребенка появляются условные рефлексы, которые отличаются крайней непрочностью, слабостью, и приобретают относительное постоянство лишь к 3—4 месяцам.
Нарастание тонуса затылочных мышц позволяет двухмесячному ребенку, положенному на живот, поднимать голову. К 2,5—3 месяцам начинается развитие движений рук в направлении к видимому предмету (игрушке), а к 5—6 месяцам ребенок точно протягивает руку к предмету, с какой бы стороны он ни находился.
В 4 месяца развиваются движения перевертывания со спины на бок, а в 5 месяцев — на живот и с живота на спину.
В возрасте 4—6 месяцев ребенок ползает, в положении на животе поднимает голову и верхнюю часть туловища.
В 6—7 месяцев начинает вставать на четвереньки. С развитием мышц туловища и таза ребенок в возрасте 6—8 месяцев начинает сидеть и делает попытки вставать, стоять и опускаться, придерживаясь руками за опору.
В период подготовки к ходьбе анатомо-физиологические особенности ребенка затрудняют процесс овладения равновесием: мышечная система нижних конечностей еще слаба, ножки короткие и полусогнуты; общий центр тяжести (ОЦТ) располагается более высоко, чем у взрослого человека; стопы также меньше, чем у взрослого. Поэтому в период обучения ходьбе очень важно помочь ребенку в поддержании равновесия. К концу первого года ребенок свободно стоит и, как правило, начинает самостоятельно ходить. Началом самостоятельной ходьбы можно считать тот день, когда ребенок впервые пройдет несколько шагов. Но в этот период устойчивость его при ходьбе и прямостоянии незначительна. Равновесие ему удается сохранять, балансируя руками, разведенными в стороны и широко расставленными ногами.
К 3—4 годам совершенствуется координация движений, что позволяет ребенку при ходьбе и стоя сохранять равновесие, не прибегая к помощи рук.

Рис. 15.27. Последовательность овладения основными движениями у детей (по Сейдж)

В возрасте 4—5 лет ребенку доступны разнообразные и сложные по координации движения: бег, прыжки, гимнастические и акробатические упражнения, катание на коньках и т. д. В этом возрасте ребенок осваивает и более точные движения, связанные с развитием мелких мышц кисти, предплечья и т. д.
К 6—7 годам заметно увеличивается сила мышц разгибателей туловища, бедра и голени. Важнейшим в формировании двигательных факторов является ходьба, игры, бег и сочетание ходьбы с бегом, прыжками.
В возрасте 5—8 лет заметно увеличивается точность и меткость движений (метание мяча и других предметов).
В период от 8 до 11—12 лет продолжается дальнейшее совершенствование двигательных навыков, особенно в беге, ходьбе, прыжках, метании, гимнастических и акробатических упражнениях.
Вместе с тем у школьников по сравнению с дошкольниками, увеличивается время вынужденной неподвижности (гиподинамия). На этом этапе важной является роль активных движений как фактора здоровья (бег, игры, ходьба на лыжах, плавание и другие виды локомоций).
Показано, что у дошкольников и младших школьников при увеличении возраста и скорости бега в фазе отталкивания увеличивается скорость выпрямления опорной ноги, а при более высокой скорости характерны также большой угол разгибания в коленном суставе и большее продвижение тела вперед от опорной ноги в момент отрыва ее от земли. С возрастом, особенно у лиц преклонного возраста, эти показатели значительно меняются.
Центр тяжести (ЦТ) при беге движется по волнообразной колеблющейся кривой. С увеличением возраста величина подъема тела или вертикальное перемещение ЦТ, становится меньше, тогда как горизонтальное перемещение увеличивается.
Отмечены также возрастные изменения временной структуры шага; в частности, до 30 лет время опоры немного и постепенно увеличиваются, а затем остается приблизительно постоянным (K.U. Smith et al., 1960; K.U. Smit., D. Greene, 1962). У пожилых людей, занимающихся бегом, полного разгибания в тазобедренном и коленном суставах до завершения отталкивания не происходит. Кроме того, маховая нога выносится вперед незначительно, бегун держит ее вблизи опорной ноги.

Рис. 15.28. Скорость общих энерготрат (ординат) человека при ходьбе
и беге в зависимости от скорости движения (абсцисса)
(no R. Passmore, J.V. Durnin, 1955; Е.М. Roth, 1966)
Энергетический обмен при ходьбе и беге (рис. 15.28). Организм получает энергию из окружающей среды в виде потенциальной энергии, заключенной в химических связях молекул жиров, углеводов и белков. В результате сложных окислительных процессов образуется энергия.
Выявлено, что 80% энергии, используемой при мышечной деятельности, теряется в виде тепла из-за малой эффективности ее превращения, и только 20% превращается в механическую работу.
Мышечная работа существенно изменяет интенсивность обмена. Так, у спортсменов при кратковременных интенсивных упражнениях, выявлено увеличение метаболизма в 20 раз по сравнению с показателем основного обмена, а при продолжительной работе — в 10 раз.
У людей метаболизм неуклонно меняется с возрастом. У детей он больше, в период полового созревания уменьшается и меньше всего он в старости.
В табл. 15,3 показаны энерготраты при ходьбе и беге.
Таблица 15.3
Энерготраты при ходьбе и беге
Вид деятельности
Энерготраты на 1 кг массы тела, Дж/с
Ходьба
110 шагов в 1 мин
4,74
6 км/час
4,98
Бег со скоростью 8 км/час
9,46
10,8 км/час
12,4

Расчеты показывают, что человек, преодолевающий в день при обычной ходьбе расстояние в 5 км, нуждается в восполнении энергии, равной 5 МДж, а на терренкуре (ходьба с углом подъема 15° и скоростью 2 км/ч) 60 мин — 450 ккал (при массе тела 70 кг).
Затраты энергии растут с увеличением скорости в степенной зависимости. Они увеличиваются при малых скоростях во второй степени, а при приближении к доступному для данного лица максимуму — в третьей и даже в четвертой степени.

Биомеханика различных видов спорта

Гребля

При гребле весла совершают рабочие движения (гребок), направленные назад, относительно лодки, и возвратные движения (замах), направленные вперед. На рис. 15.29 представлена гребная лодка, скорость движения которой Умы будем считать постоянной, хотя реальная лодка двигалась бы во время рабочего хода весел ускоренно, а во время возвратного хода замедленно. На нее действует лобовое сопротивление D. Лопасти весел движутся вперед и назад со скоростью U относительно лодки, так что относительно воды они имеют скорость (U — V), направленную назад во время рабочего движения и скорость (U + V), направленную вперед

Рис. 15.29. Механика гребли (по Р. Александер, 1970)
во время возвратного движения. В первом случае лопасти испытывают лобовое сопротивление d, а во втором — d'. Мощность, необходимая для того чтобы лодка преодолевала сопротивление воды, равна DV. Во время рабочего движения весел на преодоление их лобового сопротивления расходуется мощность 2d(U—V) так что общая мощность составляет 2d(U — V) + DV. Во время возвратного движения вместо 2d'(U — V) мы будем иметь 2d'(U + V) и общая мощность будет равна 2d'(U + V) + DV. Средняя затрата мощности составляет d(U — V) + d'(U + V) + DV, а КПД равенВо время рабочего движения на весла действует сила 2d, направленная вперед, а при возвратном движении — сила 2d', направленная назад, так что средняя сила равна (d — d') и направлена вперед. Эта сила должна уравновешивать лобовое сопротивление лодки, т. е. D = (d-d').
После того, как мы подставили (d — d') вместо D наше выражение для КПД примет вид Первый множитель в этом выражении зависит от относительных размеров и коэффициентов сопротивления лодки и весел, и его можно сравнить с теоретическим КПД винта. На самом деле КПД будет меньше величины приведенного выражения, так как мы не учитывали некоторых потерь энергии. Например, лопасти весел движутся не по прямой, а по дуге круга и следовало бы учесть работу, затрачиваемую на отталкивание воды в сторону.
Для того чтобы КПД был высоким, скорость движения весел не должна быть намного больше скорости движения лодки. Форма весла должна обеспечивать большое лобовое сопротивление при малой скорости. Быстрые гребные лодки имеют обтекаемую форму, но весла у них с широкой, плоской лопастью, которую держат перпендикулярно траектории ее движения в воде, чтобы сделать возможно большим лобовое сопротивление. Величина d' должна быть малой. Для возвратного движения гребцы поднимают весла над водой, так как сопротивление воздуха гораздо меньше, чем при той же скорости в воде. Чтобы еще больше снизить d', лопасти весел поворачивают в горизонтальное положение.
Плавание

При плавании все части тела вовлекаются в движение. Плавание основано на взаимодействии пловца с водой, при котором создаются силы, продвигающие его в воде и удерживающие на ее поверхности.

Рис. 15.30. Плавание вольным стилем (а, б, в).
Старт в плавании вольным стилем (а): 1. Исходное положение: лицо пловца обращено вперед; плечи — над коленями, колени — над пальцами ног; положение рук вариативно. 2. Вылет со стартовой тумбочки. 3. Тело в полете вытянуто, голова между руками. 4. Тело под небольшим углом входит в воду. 5. Ноги начинают движение в тот момент, когда достигнута максимальная скорость от прыжка. 6. Руки начинают гребковые движения, поддерживая максимальную скорость. 7. Через несколько гребков начинается дыхание. Движения ногами в кроле (б). На верхнем рисунке правая нога выполняет удар, а левая выходит в исходное положение для удара. На среднем рисунке удар выполняет левая нога. Сила отталкивания направлена, как показывают стрелки, не вниз, а назад. Нижний рисунок демонстрирует положение пловца при плавании с помощью ног с доской. Руки вытянуты вперед, пальцы положены на доску сверху, пловец лежит в воде, как при плавании кролем, что создает большую нагрузку для ног. в: Дыхание в кроле. На верхнем рисунке показано начало вдоха в тот момент, когда левая рука вошла в воду. Голова опущена и ее ось является продолжением оси тела. Средний рисунок иллюстрирует положение головы в сочетании с движением правой руки. Нижний рисунок показывает, как быстро лицо поворачивается в воду после окончания вдоха


Биомеханика плавания связана с тем, что силы, тормозящие продвижение, значительны, переменны и действуют непрерывно. «Опора» на воду создается во время гребковых движений и остается переменной по величине.
Спортивное плавание включает четыре вида: вольный стиль (кроль), плавание на спине, брасс, баттерфляй.
Вольный стиль (рис. 15.30). Продвижение вперед происходит постоянно за счет смены работы рук и ног. Руки действуют под водой для продвижения вперед, а противоположное движение — вынос рук вперед — происходит над водой. Движение кисти под водой происходит без сильного отклонения в сторону при слегка согнутой руке. Оно заканчивается, когда рука выходит из воды у бедер. Затем без остановки рука переносится вперед и снова включается в эффективную работу перед плечом. Движения ног — вверх-вниз представляет собой малый тормозящий момент. Движение начинается от таза и продолжается через бедро, коленный сустав, голень, голеностопный сустав вплоть до пальцев ног. При ударе вниз стопа поворачивается внутрь для повышения эффективности отталкивания.
Плавание на спине (рис. 15.31). Тело выпрямлено, плечевой пояс лежит несколько выше таза, голова слегка подтянута к груди.
Движения рук. К началу подводного движения, продвигающего тело пловца вперед, руки находятся на поверхности воды в выпрямленном положении над плечом. Кисть — в положении отталкивания. Руки начинают подтягивать, при этом они слегка согнуты в локтевом суставе. В конце движения под водой руки опять почти выпрямлены. Во время всей работы в воде кисть проводится на глубине 20—30 см. Рука переносится над водой и, опускаясь в нее, начинает новую рабочую фазу. Ритм смены рук здесь отличается от кроля. В то время, как одна рука совершает движение под водой, другая производит маховое движение над водой и затем погружается в воду.
Движения ног. Ноги совершают поочередно удары вверх и вниз. Здесь стопа по мере надобности разворачивается внутрь во время удара вверх с тем, чтобы повысить действенность отталкивания. Амплитуда движения составляет 30—50 см.
Брасс (рис. 15.32). Брасс — самый медленный стиль из четырех спортивных способов плавания. Это объясняется прежде всего тормозящими моментами, возникающими при вынесении рук вперед, а также слабо выраженным подводным движением.
Движения рук. Из вытянутого положения руки симметрично разводятся в стороны и несколько вниз; при этом внутренние поверхности кистей, развернутые во внешнюю сторону и слегка закругленные, действуют как весла. Примерно на уровне плеч руки делают легкий мощный толчок внутрь, подводятся близко к груди и широко разводятся вперед.


Рис. 15.31. Плавание на спине (а, б, в, г, д). Вид сбоку (а) — показана прямая линия «спина—бедра» и плоское положение тела в воде. Пунктирная линия очерчивает
зону выполнения гребка. Движения ногами при плавании на спине (б) — нога движется вверх в согнутом положении, вниз — выпрямленная. Ноги выполняют движения несколько глубже, чем при плавании кролем на груди. Вид спереди и сзади (в) — верхний рисунок показывает гребок левой рукой и пронос правой. Средний и нижний рисунки показывают согнутое положение руки в гребке; рука проводится близко к поверхности воды. Старт (д): 1 — наиболее распространенные исходные положения на старте: а) стопа одной ноги стоит выше другой; б) обе стопы находятся на одном уровне. Первое положение более удобно и надежно. 2. Оттапкивание от стенки с активным движением головой. Руки выполняют мах через стороны или над головой. 3. В конце полета тело почти прямое, голова отклонена назад. 4. Голова слегка поднимается для регулирования глубины скольжения. 5. Ноги начинают движения, после чего включаются руки. Обычный скоростной поворот на спине (г): 1 — Правая рука касается стенки. 2. Голова опускается вниз; ноги сгибаются для повышения скорости поворота; правая рука касается стенки на глубине 50—60 см; левая поддерживает равновесие. 3. Пловец проносит ноги по воздуху к стенке. 4. Пловец готов к отталкиванию. 5. Спортсмен отталкивается, слегка направляя тело к поверхности воды

Рис 15.32. Плавание брассом (а, б, в, г). Вид сбоку (а): 1. Исходное положение: руки вытянуты, голова опущена, ноги прямые. 2. Руки начали гребок, ноги - подтягивание Голова пока опущена. Обратите внимание на колени. 3. Руки выполняют гребок. Голова поднята для вдоха. 4. Руки закончили гребок. Голова в высоком положении. Ноги готовы начать отталкивание. 5. Ноги заканчивают отталкивание. Руки вытянуты, голова опущена. Обратите внимание на высокое, близкое к поверхности воды положение ног. 6. И снова исходное положение. Движение руками в брассе (вид спереди) (б). На двух верхних рисунках — положение рук перед началом гребка. На следующих двух показан гребок с высоким положением локтя. Нижний рисунок иллюстрирует положение рук перед их выведением вперед. Движения ногами в брассе (в): 1. Положение перед началом подтягивания ног. 2. Начинается подтягивание ног. Стопы все еще вместе, расстояние между коленями больше, чем между стопами. 3. Ноги подтянуты полностью. Стопы развернуты в стороны для того, чтобы увеличить площадь отталкивания. Начинается толчок назад. 4. Вид сбоку иллюстрирует фазу подтягивания ног. Обратите внимание на высокое положение коленей. Поворот в брассе (г): 1. Руки касаются стенки на уровне воды. 2. Тело разворачивается. 3. Пловец готов к отталкиванию, 4. Отталкивание от стенки; тело вытянуто. 5 и 6. Руки выполняют длинный гребок до бедер. 7. Начинается выведение ног и рук в исходное для гребка положение. 8. После отталкивания ногами тело выходит на поверхность воды. 9. Начинается гребок руками


Движения ног. Из вытянутого положения голени одновременно и симметрично подводятся к тазу, при этом колени и пятки несколько разведены, ступни развернуты наружу и подтянуты к большой берцовой кости. Из этого положения, при котором пятки находятся на расстоянии 30—40 см от таза, производится широкий толчок разведенными ногами в стороны. При этом особенно сильно отталкиваются голенями и подошвами ступни. В затухающей фазе движения ноги опять сводят вместе и выпрямляют.
Баттерфляй (рис. 15.33). Плавание баттерфляем выполняется с помощью порхающих над водой рук одновременно с движениями ног и корпуса, которые напоминают движения хвостовых плавников дельфина. К началу подводного движения обе руки находятся впереди плеч; они подводятся под туловище одновременно. После того, как кисти обеих рук выносятся из воды в сторону от бедер, руки как можно более напряженно вновь выводятся вперед до очередного погружения.
Движение ног начинается в поясничной части. Для увеличения силы отталкивания при ударе вниз стопы повернуты внутрь, а при ударе вверх опять становятся продолжением голени.
Плавучесть точно так же как сила, обусловленная весом тела, приложена к его центру тяжести (ЦТ), подъемная сила, обусловленная весом вытесненной им жидкости, приложена к точке, называемой центром плавучести.

Рис. 15.33. Плавание способом баттерфляй (а, б, в). Вид спереди (а):
1. Положение головы перед проносом рук. 2. Гребок согнутыми руками, подобно тому, как он выполняется в кроле. 3. Положение рук после гребка в начале проноса. Вид сбоку (б): 1. Руки погружены в воду и готовы начать гребок.
2. Руки выполнили половину гребка. Начинается вдох. 3. Руки закончили гребок. Вдох заканчивается. 4. Руки выполнили половину проноса. Голова все еще над водой. 5. Голова опущена в воду перед погружением рук. Дельфинообразные движения ног в баттерфляе (в). Рисунок показывает сходство движений ногами при плавании баттерфляем с движениями ногами при плавании кролем. Ноги сгибаются при ударе вниз и, выпрямленные, поднимаются вверх
При движении в жидкости твердого тела (например, шара) ближайший слой жидкости прилипает к нему и движется вместе с ним; остальные слои скользят друг относительно друга. Сила, действующая на твердое тело, движущееся внутри вязкой среды (жидкость), и направленная противоположно скорости тела, называется сопротивлением среды.
Если при движении тела за ним не возникает завихрения, то сопротивление среды пропорционально скорости тела v. В частном случае при движении шара радиусом R сопротивление среды


где з — коэффициент внутреннего трения или вязкость. Единицы измерения коэффициента внутреннего трения:

Формула (15.1) носит название формула Стокса.
Таблица 15.4
Вязкость воды при различных температурах
t, °С
0
5
10
15
20
25
30
40
50
60
з•106 кг/м?с
1797
1518
1307
1140
1004
895
803
655
551
470
t,°C
70
80
90
100
110
120
130
140
150
160
з ?106 кг/м?с
407
357
317
284
256
232
212
196
184
174
Таблица 15.5
Кинематическая вязкость некоторых жидкостей при 20° (Hadgman C.D., 1965)
Среда
Вязкость, ПЗ
Плотность, г/см3
Кинематическая
ВЯЗКОСТЬ, СМ2/С
Воздух
1,8•10 -4
1,3 • Ю-3
0,14
Вода
0,010
1,00
0,010
Вода препятствует продвижению пловца. В гидродинамике для расчета движения жидкости используют число Рейнольдса. Число Рейнольдса — это безразмерная величина, где— плотность и вязкость жидкости, и — скорость ее движения относительно тела и а — некоторая длина.
Правило, согласно которому строение потока около тел одной и той же формы одинаково, если одинаково число Рейнольдса, неприменимо в тех случаях, когда речь идет о поведении жидкости около ее свободной поверхности.
Число Рейнольдса удобно выражать как величина, называемая кинематической вязкостью.

Во многих случаях трудно измерять силы, которые действуют на тело, движущееся в жидкости. В этой связи для экспериментов используют аэродинамические и гидродинамические трубы.
Лобовое сопротивление. При движении какого-нибудь тела в жидкости, на него действует сила, задерживающая его движение. Эту силу называют лобовым сопротивлением. Величина ее зависит от природы жидкости и от размеров, формы и скорости движущегося тела.
Как показали эксперименты в аэродинамических трубах, лобовое сопротивление тела или различных тел одной и той же формы можно определить по формуле где Д — лобовое сопротивление, р — плотность жидкости, и — скорость движения жидкости относительно тела, А — характеристическая площадь и Сд — величина, называемая коэффициентом лобового сопротивления, которая зависит от формы тела и от числа Рейнольдса.
К сожалению, не существует единого определения А, которое было бы удобным при любой форме тела. Используются следующие площади:
1) лобовая площадь, т. е. площадь проекции тела на плоскость, перпендикулярно направлению потока. В случае цилиндра, имеющего высоту h и радиус г, лобовая площадь будет равна рr2, если ось цилиндра параллельна потоку, и 2rh, если она перпендикулярна ему;
2) площадь наибольшей проекции, т. е. проекции по тому направлению, по которому площадь ее будет наибольшей; эту величину используют, когда имеют дело с обтеканием профиля крыла; по сравнению с лобовой площадью она имеет то преимущество, что не изменяется при наклоне профиля;
3) суммарная поверхность тела. Следует помнить, что в случае тонкой пластинки это будет суммарная площадь обеих ее сторон.
Если есть сомнения, то важно указать, какая именно из этих площадей была использована при вычислении коэффициента С
На рис. 15.34 приведены кривые зависимости коэффициента лобового сопротивления Сд от числа Рейнольдса для тел различной формы.
Все коэффициенты были вычислены на основе лобовой площади.
Число Рейнольдса для всех тел, кроме диска, определялось обычным способом по длине, измеренной в направлении потока; для диска же его определяли по диаметру, хотя он расположен перпендикулярно потоку.
В связи с отсутствием работы по лобовому сопротивлению у пловцов, мы приводим данные Т.О. Lang, K.S. Norris (1966), R. Alexander (1968) полученные при изучении дельфинов. Было найдено, что при коротких «бросках» дельфин может развивать скорость до 830 см/с (около 16 узлов), а со скоростью 610 см/с (около 12 узлов) способен плыть примерно в течение 1 мин. Дельфин (Turbiopsgilli) имел длину 191 см, так что число Рейнольдса при первой из этих скоростей составляло 830?191 /0,01 = 1,6?107. Профиль дельфина хорошо обтекаем. Кожа очень гладкая и лишена волос. Все указывает на малую величину лобового сопротивления.


Рис. 15.34. Зависимость коэффициента лобового сопротивления от числа Рейнольдса для диска, расположенного перпендикулярно направлению своего движения; для удлиненного цилиндра, движущегося перпендикулярно своей оси; для шара и для тела обтекаемой формы, движущегося вдоль своей оси (по Р. Александер, 1970)

Попробуем оценить величину лобового сопротивления для дельфина, плывущего со скоростью 830 см/с и мощность, развиваемую его мышцами. Лобовая площадь у дельфина длиной 191 см, вероятно, составляет около 1100 см2. Коэффициенты лобового сопротивления для обтекаемых тел при числе Рейнольдса около 1,6-107 близки к 0,055. Подставив эти величины в уравнение
мы найдем, что лобовое сопротивление у нашего дельфина составляет примерно 1 /2 (830)2?1100?0,055 = 2,0-107 дин. Мощность равна сопротивлению, умноженному на скорость, т. е. в данном случае 830?2,0?107 эрг/с, или 1660 Вт. Однако от мышц требуется большая мощность, так как КПД дельфина при плавании не может достигать 100%; поэтому она едва ли могла быть меньше 2000 Вт. Дельфин весит 89 кг, из которых на долю участвующих в плавании мышц приходится, вероятно, около 15 кг. Таким образом, мощность мышц должна составлять примерно 130 Вт/кг. Это в 3 раза больше максимальной мощности, которую могут развивать мышцы человека при работе на велоэргометре.
Лобовое сопротивление — не единственная гидродинамическая сила, действующая на тела, которые движутся в жидкости или находятся в потоке. По определению оно имеет то же направление, что и скорость движения жидкости относительно тела. Когда симметричное тело движется вдоль своей оси симметрии, действующая на него гидродинамическая сила направлена прямо и представляет собой лобовое сопротивление. Но когда симметричное тело движется под некоторым углом к оси симметрии, гидродинамическая сила действует под углом к его пути. Ее можно разложить на две составляющие, одна из которых направлена назад и представляет собой лобовое сопротивление, а другая действует под прямым углом к первой.
Энергетика пловца. Когда человек плывет, он сообщает некоторое количество энергии воде, чтобы продвинуться (проплыть) в ней. Это создает волну, которая в конечном счете потеряет всю сообщенную ей энергию в виде тепла, и поверхность воды снова станет спокойной. Затраченная таким образом при плавании энергия представляет собой совершенную работу плюс тепло, потерянное телом пловца.

Лыжный спорт

<< Предыдущая

стр. 26
(из 46 стр.)

ОГЛАВЛЕНИЕ

Следующая >>