<< Предыдущая

стр. 19
(из 34 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

Глухота, аномалии сердца, полидактилия, умственная дефективность
47, XX +18 или 47, XY +18
Трисомия .18 (синдром Эдварда)
1 : 8000
Множественные врожденные пороки многх органов. Умственная отсталость. 90% больных умирают в первые 6 месяцев. Известно, когда один ребенок дожил до 5 лет
45, X
Синдром Шерешевского-Тернера
1 : 3000
Женщины с недостаточным половым развтием, короткой фигурой, нарушениями сердечно-сосудистой системы
47, XXY
Синдром Клайнфелтера
1 :500
Мужчины с недоразвитыми тести-сами, но развитой грудью, с женским голосом, длинными конечностями
47,XXX
Синдром Трипло Х
1 : 700
Больные женщины внешне не отличаются от нормальных, но их фолликулы недостаточно развиты. Менструации нерегулярные
48,ХХХХ 48,XXXY 48,XXYY 49,XXXXY
50, XXXXXY
Различные полисомии

Аномалии скелета, умственная отсталость и другие симптомы

Мутационные нарушения плоидности хромосом человека в сторону гаплоидии неизвестны. Что касается полиплоидии, то она описана в виде триплоидии и тетраплоидии при исследовании спонтанно абортированных эмбрионов и плодов, а также мертворожденных. По некоторым данным 1% всех зачатий человека представлен триплоидными зиготами. Аборты триплоидов, как правило, происходят к концу третьего месяца беременности.
Наиболее часты болезни, являющиеся результатом анеуплои-дии (гетероплоидии) аутосом и половых хромосом. Клинически значимые аномалии составляют половину всех хромосомных аномалий новорожденных. В табл. 29 представлены данные о некоторых из таких наследственных аномалий.
Наиболее частой формой анеуплоидии являются полисомии по тем или иным хромосомам, частота которых составляет 5,7ґ10-4 на гамету/генерацию. В частности, аутосомные полисомии в виде трисомии, характеризуются тем, что одна из пар в хромосомном наборе имеет добавочную хромосому, т. е. представлена тремя го-мологичными хромосомами (2n + I) или, как говорят, представлена не дупликатом, а трипликатом. Например, болезнь Дауна, характеризующаяся серьезными нарушениями здоровья, включая нарушения психической деятельности и иммунологическую недостаточность, обусловлена трисомией по 21-й паре хромосом. Минимальный размер трисомного участка при этой трисомии составляет 300 000-400 000 пар оснований. У шимпанзе синдром Дауна является результатом трисомии по 22-й паре, которая гомологич-на 21-й хромосомной паре человека.
Аутосомные трисомии бывают и в случае других хромосом. Например, трисомия по 13-й паре обуславливает синдром Патау, по 18-й паре — синдром Эдварда. Известны также трисомии по 22-й, 8-й и др. парам хромосом. Описаны также случаи даже аутосом-ных тетрасомий и пентасомий, но они детальны и обнаруживаются только при исследовании абортусов. Что касается аутосомных мо-носомий, то они тоже детальны и тоже обнаруживаются в клетках абортусов.
Более частой формой гетероплоидии является анеуплоидия по половым хромосомам, частота которой у людей в разных странах в среднем составляет 9,3ґ10-4 на гамету/генерацию. Различают полисомии по половым хромосомам и Х-моносомии. Наиболее известными примерами наследственных заболеваний человека, в основе которых лежит гетероплоидия по половым хромосомам, являются синдромы Клайнфелтера и Трилло X, которыми страдают женщины, а также синдром 47, XYY, который характеризуется агрессивностью, умственной отсталостью и антиобщественным поведением больных мужчин.
Причинами трисомии считают нерасхождение хромосом при га-метогенезе (мейозе) у одного из родителей. В частности, трисомии в 90% случаев возникает в результате нерасхождения хромосом при овогенезе.
Такая гетероплоидия, как ХХХ-26/28, также является результатом нерасхождения хромосом при овогенезе и влияния возраста матери, тогда как анеуплоидия XXY-56/112 является результатом нерасхождения хромосом при сперматогенезе, причем возраст обоих родителей не имеет значения.
Примером наследственного заболевания, в основе которого лежит Х-моносомия, является синдром Шерешевского-Тернера. Х-мо-носомия служит, вероятно, главной причиной полового недоразвития женщин.
Частота многих хромосомных аномалий зависит от возраста матерей, что хорошо показано в случае синдрома Дауна (табл. 30).
Как правило, мутации количества хромосом происходят в гаметах одного из родителей. Поэтому, все клетки организма, в зачатии которого принимала участие одна из мутантных гамет, будут содержать аномальный хромосомный набор. Однако иногда количественные хромосомные мутации могут случаться в процессе первых делений зиготы, образованной нормальными гаметами. Из такой зиготы разовьется организм, часть клеток которого будет иметь нормальный диплоидный набор, другая же часть — аномальный. Это явление называют хромосомным мозаицизмом, а индивидов, обладающих мозаицизмом — хромосомными мозаиками. Мозаицизм более част по половым хромосомам. Такие мозаики имеют генотип Х/ХХ, X/XY, XX/XY, XXY/XX.
Таблица 30
Возраст матерей и частота синдрома Дауна

Возраст матерей
Частота синдрома
до 20 лет
1 : 2000
до 30 лет
1 : 1000
до 30-34 лет
1,6 : 1000
до 35-39 лет
4 :1000
до 40—44 лет
14 : 1000
до 45 и выше
25 : 1000

Для хромосомных болезней, причиной которых являются мутации количества хромосом, также как и для генных, характерна в качестве «сопутствующего» симптома умственная отсталость. Она часта в случае аутосомных синдромов. Что касается половых хромосом, то около 1% умственно отсталых женщин имеют одну или более лишнюю хромосому X.
Хромосомные болезни, детерминируемые мутациями структуры хромосом, более редки, а их клиническое проявление менее выражено или неспецифично по сравнению с аномалиями, вызываемыми мутациями количества хромосом. Мутации структуры хромосом выявлены во всех парах аутосом. Часто многие из этих мутаций называют частичными трисомиями и моносомиями. Например, деления по хромосомной паре 5 вызывает синдром «кошачий крик», связанный с анатомическими изменениями лицевого скелета. Синдром «дупликация-делеция» в хромосоме 3° заключается в спонтанных абортах. Описаны, однако, два рождения, при которых ребенок не способен сидеть, не может есть твердую пищу, имеет очень короткий нос. Предполагают, что при синдроме Дауна в некоторых случаях происходит транслокация сегмента хромосомы 21 на другую хромосому. По данным японских авторов 14 из 321 больного болезнью Дауна характеризовались транслокацией части хромосомы на одну из нескольких других хромосом.

Таблица 31
Частота встречаемости отдельных болезней среди родственников

Болезнь
Частота (%)

Конкордантность у близнецов (%)


среди родственников
в популяции
монозиготные
дизиготвые
Ишемическая болезнь сердца
30-60
19
67
43
Язвенная болезнь
8
0,6
50
14
Шизофрения
14
1
67
18
Ревматизм
10
2
37
7

Наследственная патология, обусловленная митохондриальными генами. Известно небольшое количество наследственных болезней, получивших название митохондриальных из-за того, что в их основе лежат изменения в ДНК митохондрий, т. е. митохондриальных генов.
Одной, наиболее известной из таких болезней, является наследственная оптическая нейропатия Лебера, связанная с поражением мышц глаза и проявляющаяся в виде внезапной потери зрения в период между юношеским и взрослым возрастом из-за инактива-ции зрительного нерва.
Описаны также хроническая прогрессирующая офтальмоплегия, синдромы Кернса-Сэйра и Пирсона, митохондриальная энцефаломиопатия и молочный ацидоз.
Известны данные, в соответствии с которыми перестройки в митохондриальной ДНК фенотипически проявляются в развитии диабета Diabetus melitus.
Болезни с наследственным предрасположением. Болезни, в патогенезе которых играет роль наследственность и проявление которых зависит от действия факторов внешней среды, называют болезнями с наследственным предрасположением. Такими болезнями являются атеросклероз, гипертоническая болезнь, ишемическая болезни сердца, ревматизм, язвенная болезнь, дерматиты, некоторые формы диабета, шизофрения и другие. Доводами в пользу наследственной предрасположенности служит существенно большое накопление повторных случаев болезни среди родственников больных по сравнению с популяционной частотой данного заболевания, а также значительное повышение показателей конкордантно-сти в парах монозиготных близнецов по сравнению с. такими показателями в парах дизиготных близнецов (табл. 31).
Генетическая природа болезней с наследственным предрасположением неодинакова. Различают моногенные и полигенные болезни с наследственным предрасположением.
Моногенные болезни с наследственным предрасположением — это болезни, при которых предрасположенность определяется одним геном во взаимодействии с точно известным фактором среды. Полигенные болезни с наследственным предрасположением — это те болезни, при которых предрасположенность определяется многими генами и также во взаимодействии со многими факторами среды. Такие болезни часто называют мультифакториальными болезнями.
Изучение мультифакториальных болезней затруднено по многим причинам, одна из которых заключается в поисках генетических маркеров предрасположения. Например, в случае атеросклероза повышенный уровень холестерина контролируется несколькими генами, один из которых'ответственен за повышение уровня холестерина (семейная гиперхолистеринемия), второй — за повышение в сыворотке концентрации триглицеридов (семейная глицеридемия), третий — за повышение уровня обоих липидов (комбинированная гиперлипидемия). Поскольку холестерин и триглицериды имеют значение в развитии раннего атеросклероза коронарных сосудов, то считают, что эти гены в сочетании с фактором среды создают механизм предрасположения к атеросклерозу и развитию инфаркта миокарда.
Болезни с наследственной предрасположенностью характеризуются разной степенью выраженности, что является отражением разных уровней накопления факторов предрасположения и комбинации их с разными по степени и направлению воздействия факторами среды (стресс, климатические условия, инфекции и др.).

§ 69 Генетические принципы диагностики,
лечения и профилактики наследственных
болезней

Различают пренатальную и постнатальную диагностику. В пре-натальной диагностике используют ряд методов, среди которых наиболее эффективным является так называемый амниоцентоз (рис. 160). Суть этого метода заключается в получении от женщин околоплодной жидкости и исследовании ее непосредственно путем микроскопии содержащихся в ней клеток или после культивирования последних.
С помощью метода амниоцентоза возможно определение пола и кариотипа плода. Пренатальную диагностику обычно используют в семьях, где риск рождения наследственно больного ребенка составляет около 3-5%.




Постнатальная диагностика наследственных болезней основывается на результатах генетического и клинического обследования пациентов. Генетическое обследование пациентов основывается в первую очередь на результатах генеалогического анализа. В зависимости от показаний привлекают также цитогенетические, биохимические, иммунологические и другие методы.
Большое значение имеют методы массовой («просеивающей») диагностики с целью проверки населения на возможность скрытых форм наследственных аномалий. «Просеивающую» диагностику применяют к новорожденным с целью выявления галактозе-мии, муковисцидоза и других наследственных болезней и к определенным группам населения с целью выявления гетерозигот-ного носительства болезни Тея-Сакса, серповидноклеточной анемии и талассемии.
Во многих случаях диагностика наследственных болезней является успешной. Однако в случае гетерогенных наследственных аномалий (разных аномалий, но сходных по проявлению) она очень затруднена. Особенно сложной является диагностика болезней, характеризующихся умственной отсталостью, т. к. она осложнена разнообразием факторов среды.
Наследственные болезни пока не поддаются радикальному лечению, ибо пока не разработаны методы исправления генотипа. Но многие наследственные болезни можно лечить, используя симптоматическое лечение или влияя на развитие болезни. В частности, при некоторых наследственных болезнях прибегают к диетотерапии.
Например, патогенез такого наследственного заболевания, как галактоземия, связан с накоплением в клетках галактозы из-за отсутствия фермента р-0-галакто-1-фосфатуридилтрансферазы, вследствие чего развиваются изменения в печени и головном мозге, и, наконец, ослабление умственной деятельности, то лечение болезни обычно проводят исключением материнского молока и назначением диеты, не содержащей галактозы.
Другим примером диетотерапии является лечение фенилкето-нурии, которая может быть обнаружена простым исследованием мочи новорожденных. Новорожденному с этой болезнью на весь период детства назначают диету с пониженным содержанием фе-нилаланина, что предупреждает умственную отсталость и другие симптомы фенилкетонурии. Когда «вылеченные» становятся матерями, они вновь должны вернуться к диете с пониженным содержанием фенилаланина и таким образом обеспечить подходящую среду для плода. Их потомство (девочки) тоже может нуждаться в низкой по фенилаланину диете в раннем детстве, чтобы предупредить симптомы болезни.
С целью лечения часто прибегают к введению в организм недостающего фактора. Например, при первициозной анемии, гемофилии и антигемофильной глобулиновой недостаточности прибегают к периодическим инъекциям специфического (недостающего в организме) белка, что временно улучшает состояние больных.
Для лечения ряда болезней используют переливание крови или удаление из организма токсических веществ с помощью лекарственных средств. Лекарственную терапию часто используют также с целью индукции недостающих ферментов. Например, отдельные наследственные болезни лечат фенобарбиталами, которые стимулируют индукцию недостающих ферментов. При гомо-литической болезни новорожденных (Ш^-дети) матерям вводят глобулин Rh, который разрушает Rh-позитивные клетки плодового происхождения и предупреждает образование Rh-антител, которые могут повредить другие плоды в последующих беременностях.
Важное место в лечении наследственных болезней занимает хирургическое лечение. Например, часто прибегают к удалению толстой кишки при полипозе, селезенки — при сфероцитозе, почек — при цистинозе. Многие аномалии (незаращение верхней губы, врожденные пороки сердца, полисиндактилия, болезнь Нимена-Пика и др.) исправляют хирургической коррекцией или с помощью трансплантаций. Однако важно подчеркнуть, что при лечении генетический дефект у больных сохраняется. Вступая в детородный возраст, наследственные больные передают неблагоприятные гены своему потомству.
В широком плане в рамках разных методов лечения наследственных болезней можно рассматривать и евфенические мероприятия, под которыми понимают компенсацию естественных недостатков человека, в фенотипе, т.е. улучшение здоровья человека через фенотип. Часто евфенические мероприятия называют лечением адаптивной средой. Они известны давно и к ним относят пре-натальную и постнатальную заботу о потомстве, иммунизации, переливания крови, трансплантации органов, пластическую хирургию, обагащение диет белками, витаминами и микроэлементами, исключение из диет отдельных углеводов, физическую культуру, лекарственную терапию при тех наследственных болезнях, проявление которых зависит от факторов среды. Однако евфенические мероприятия, как и симптоматическое и патогенетическое лечение, тоже не приводят к радикальным результатам, ибо благодаря евфенике нельзя кардинально преодолеть наследственные дефекты. Кроме того эффекты, достигнутые в результате евфенических мероприятий, не передаются по наследству и не сопровождаются уменьшением количества неблагоприятно действующих генов в популяциях человека.
Этиологическое лечение наследственных болезней, которое должно приводить к кардинальному исправлению наследственных аномалий, еще не разработано. Однако в связи с достижениями физико-химической биологии сформулированы и разрабатываются программы изменения в желаемом направлении фрагментов генетического материала, детерминирующих наследственные аномалии человека.
Профилактика наследственных болезней сводится к профилактике болезней, унаследованных от предыдущих поколений и к профилактике болезней, вновь возникающих в результате мутаций в зародышевых клетках родителей.
Профилактика болезней, унаследованных от предыдущих поколений (сегрегационный груз), осуществляется, главным образом, с помощью медико-генетической консультации. Основные задачи медико-генетического консультирования сводятся к тому, чтобы преодолеть степень риска рождения ребенка с наследственной патологией в данной семье и помочь родителям принять правильное решение, а также насторожить на риск рождения наследственно отягощенного ребенка и облегчить возможность постановки раннего диагноза и принятия лечебных мер. В глобальном плане медико-генетическая консультация должна понижать частоту неблагоприятных генов в популяциях человека.
Результативность медико-генетической консультации зависит от точности знания родословной и точности определения скрытого носительства патологических генов, диагностики гетерозиготного состояния. Медико-генетическая консультация связана с исключительной морально-этической ответственностью консультирующего генетика или врача в познании тайн при анализе родословных и в определении степени риска. От медико-генетической консультации, как врачебного заключения, следует отличать консультацию как
учреждение. В нашей стране первая медико-генетическая консультация была организована еще в конце 20-х гг. (С. Н. Давиденков). В настоящее время медико-генетические консультации существуют во многих странах мира.
Профилактика наследственных болезней, вновь возникающих в результате мутации (мутационный груз), сводится к предупреждению загрязнения среды обитания человека факторами, которые могут действовать как мутагены. В условиях научно-технической революции серьезное значение приобретает слежение за генетическими процессами в популяциях человека (см. гл. XVIII).

Вопросы для обсуждения

1. Применимы ли законы Г. Менделя к человеку? Если да, то покажите, на чем основана их применимость.
2. Чем отличаются методы изучения наследственности человека от основного метода генетики — классического генетического анализа?
3. Каким образом можно установить принадлежность группы сцепления к той или иной паре хромосом человека?
4. Какова ценность метода клонирования генов в генетике человека?
5. Назовите нормальные признаки человека, детерминируемые ауто-сомными, доминантными и рецессивными генами.
6. Приведите примеры наследственности человека, сцепленной с полом.
7. Что вы знаете о генетической индивидуальности людей?
8. Что такое генетический груз и чем он определяется?
9. Как классифицируют наследственные болезни?
10. Назовите генные наследственные болезни, наследуемые как ауто-сомные доминантные и рецессивные признаки, а также признаки, сцепленные с полом.
11. Что вы знаете о хромосомных болезнях, их частоте, особенностях распространения и этиологии?
12. Что вы знаете о болезнях с наследственным предрасположением и об их отличиях от наследственных болезней?
13. Аномалия «заячья губа» встречается с частотой 0,1% . Конкордант-ность по этому признаку между идентичными близнецами составляет 50%, между сибсами — 3,5%, между двоюродными братьями и сестрами — 0,7%, а между троюродными братьями и сестрами — 0,3%. На степень конкордантности не влияет пол. Можете ли вы на основе этих данных определить тип наследования «заячьей губы»?
14. В эритроцитах человека найдено три электрофоретически различных формы кислой фосфатазы А, В и С. При исследовании 178 англичан оказалось, что их эритроциты содержат разные фосфатазы, а именно:
фосфатаза А — 17 человек, фосфатазы В + С — 9,
фосфатаза В — 61 человек, фосфатазы А + С — 5,
фосфатаза С—О, фосфатазы А, В и С — О,
фосфатазы А + В — 86 человек.
Объясните эти результаты. Почему ни у кого не найдена фосфатаза С?
16. Какими могут быть заключения в следующих трех случаях семейной ситуации?
а) Дядя женщины (брат ее матери) болел гемофилией. Женщина забеременела и желает знать, каков риск рождения у нее ребенка-гемофилика. Как могла бы измениться ситуация, если бы дядей-гемофиликом был брат ее отца?
б) Женщина имела двоюродного брата, который умер от фиброцис-тита. Имеется ли риск рождения у этой женщины больного ребенка?
в) Старшая сестра мужчины страдала хореей Хантингтона. Мужчине 40 лет и он хочет знать о риске для себя и детей, которых он желает иметь. Что вы скажете в ответ на его вопросы?
16. Какова, по вашему мнению, результативность лечения наследственных болезней? Какое социальное значение имеет невозможность лечения некоторых наследственных болезней?
17. В чем состоит профилактика наследственных болезней? Каковы возможности и ограничения генетической консультации? Каким образом можно привлечь внимание к генетической консультации индивидов детородного возраста?
18. Что вы знаете о научных направлениях в разработке способов радикального лечения наследственных болезней?
19. Что такое генетический мониторинг и каково его значение в профилактике наследственных болезней, в охране среды обитания человека?

Литература

Бочков Н. П., Захаров А. Ф., Иванов В. И. Медицинская генетика. М.: Медицина.
1984. 366 стр. Дубинин Н. П., Карпец И. И., Кудрявцев В. Н. Генетика, поведение, ответственность.
М.: Изд. политической литературы. 1982. 304 стр. Цехов А. П. Биология и общая генетика. М.: Изд. РУДН. 1993. 439 стр.

























Раздел IV
ЭВОЛЮЦИЯ ОРГАНИЧЕСКОГО МИРА



«...твердо помнить должно,
что видимые телесные на Земле вещи
и весь мир не в таком состоянии
были с начала от создания,
как ныне находим,
но великие происходили
в нем перемены...»

М. В. ЛОМОНОСОВ
(1763)

Масса Земли составляет около 4ґ1018 тонн, а возраст — около 4,5-5 млрд лет. Считают, что жизнь возникла на Земле примерно 3,5-3,8 млрд лет назад.
Она оказала существенное влияние на атмосферу, которая изменялась от окисляющей к неокисляющей.
Огромное разнообразие живых форм, населяющих сейчас Землю, является результатом длительного процесса эволюции, под которой понимают развитие организмов во времени или процесс исторического преобразования на Земле, результатом которого является многообразие современного живого мира. Термин «эволюция» (от лат. evolutio — развертываю) был введен в науку в 1762 г. швейцарским натуралистом Ш. Бонна (1720-1793).
Вначале эволюция шла очень медленно. Первыми и единственными живыми обитателями Земли в течение 3 млрд лет были микроорганизмы. Многоклеточные появились после четырех пятых времени начала существования Земли. Эволюция человека заняла несколько последних миллионов лет. Центральным моментом эволюции является филогенез (от греч. phyle — племя, genesis — развитие), — процесс возникновения и развития вида, т. е. эволюцию вида.
Представления о развитии жизни отражены в теории эволюции, которая основывается на данных об общих закономерностях и движущих силах развития живой природы. Она представляет собой синтез достижений дарвинизма, биологии, генетики, морфологии, физиологии, экологии, биогеоценологии и других наук. В наше время теория эволюции, основу которой составляет дарвинизм, — это наука об общих законах развития органической природы, методологическая основа всех специальных биологических дисциплин.
В этом разделе мы рассмотрим теорию эволюции. Будут приведены также данные о происхождении жизни, о микроэволюции и видообразовании, а также о ходе, главных направлениях и доказательствах эволюции. В самостоятельных главах мы излагаем сведения об эволюции систем органов животных и о происхождении человека.






































Глава XIV
ТЕОРИЯ ЭВОЛЮЦИИ

§ 70 Представления об эволюции до
ЧарлзаДарвина

Эволюция протекает на всех уровнях организации живой материи и на каждом уровне характеризуется новообразованием структур и появлением новых функций. Объединение структур и функций одного уровня сопровождается переходом живых систем на более высокий эволюционный уровень.
Проблемы происхождения и эволюции жизни на Земле принадлежали и принадлежат к числу величайших проблем естествознания. Эти проблемы привлекали к себе внимание человеческого ума с самых незапамятных времен. Они являлись предметом интереса всех философских и религиозных систем. Однако в разные эпохи и на разных ступенях развития человеческой культуры проблемы происхождения и эволюции жизни решались по-разному.
В основе современной теории эволюции лежит теория Ч. Дарвина. Но эволюционизм существовал и до Ч. Дарвина. Поэтому, чтобы лучше понимать современную теорию эволюции, важно знать о взглядах на мир до Ч. Дарвина, о том, как развивались идеи эволюционизма.
Самыми древними взглядами на природу были мистические, по которым жизнь связывали с силами природы. Но уже у самых истоков культуры в древней Греции на смену мистическим истолкованиям природы приходят начала других представлений. В тот период возникла и стала развиваться доктрина абиогенеза и спонтанного самозарождения, в соответствии с которой признавалось, что живые организмы возникают спонтанно из неживого материала. Тогда же появились и эволюционные идеи. Например, Эмпедокл (490—430 гг. до н. э.) считал, что первые живые существа возникли из четырех элементов мировой материи (огонь, воздух, вода и земля) и что для природы характерно закономерное развитие, выживание тех организмов, которые наиболее гармонично (целесообразно) устроены. Эти мысли были очень важными для дальнейшего распространения идеи о естественном происхождении живых существ.
Демокрит (460-370 гг. до н. э.) считал, что мир состоит из множества мельчайших частиц, которые находятся в движении, и что жизнь является не результатом творения, а результатом действия механических сил самой природы, приводящих к самозарождению. По Демокриту самозарождение живых существ происходит из ила и воды в результате сочетания атомов при их механическом движении, когда мельчайшие частицы влажной земли встречаются и соединяются с атомами огня. Самозарождение представлялось случайным процессом.
Предполагая, что черви, клещи и другие организмы возникают из росы, ила, навоза, волос, пота, мяса, моллюски из влажной земли, а рыбы из морской тины и т. д., Платон (427-347 гг. до н. э.) утверждал, что живые существа образуются в результате соединения пассивной материи с активным началом (формой), представляющим собой душу, которая затем движет организмом.
Аристотель (384-322 гг. до н. э.) утверждал, что растения и животные возникают из неживого материала. В частности, он утверждал, что некоторые животные возникают из разложившегося мяса. Признавая реальность материального мира и постоянство его движения, сравнивая организмы между собой, Аристотель пришел к заключению о «лестнице природы», отражающей последовательность организмов, начинающуюся с неорганических тел и продолжающуюся через растения к губкам и асцидиям, а затем к свободно живущим морским организмам. Однако, признавая развитие, Аристотель не допускал мысли о развитии низших организмов к высшим.
Взгляды Аристотеля оказали влияние на века, ибо последующие греческие и римские философские школы полностью разделили идею самопроизвольного зарождения, которая все больше и больше наполнялась мистическим содержанием. Описания различных случаев самозарождения даны Цицероном, Овидием, позднее Сенекой, Пли-нием, Плутархом и Апулеем. Идея изменяемости прослеживается во взглядах древних философов Индии, Китая, Месопотамии, Египта. Раннее христианство обосновывало доктрину абиогенеза примерами из Библии. Подчеркивалось, что самозарождение действует от сотворения мира до наших дней.
В течение средних веков (V-XV вв.) вера в самопроизвольное самозарождение была господствующей среди ученых того времени, ибо философская мысль тогда могла существовать лишь в качестве богословской мысли. Поэтому сочинения средневековых ученых содержат многочисленные описания самозарождения насекомых, червей, рыб. Тогда часто считали, что даже львы возникли из камней пустыни. Знаменитый врач средневековья Парацельс (1498—1541) приводил рецепт «изготовления» гомункулуса (человека) путем помещения спермы человека в тыкву. Как известно, Мефистофель из трагедии Гёте «Фауст» называл себя повелителем крыс, мышей, мух, лягушек, клопов и вшей, чем И. Гёте подчеркивал чрезвычайные возможности самозарождения.
Средневековье не внесло новых идей в представления о развитии органического мира. Напротив, в тот период царило креационисти-ческое представление о возникновении живого в результате акта творения, о постоянстве и неизменности существующих живых форм. Вершиной креационизма было создание лестницы тел природы: бог — ангел — человек — животные, растения, мицеллы.
Гарвей (1578—1667) допускал, что черви, насекомые и другие животные могли зарождаться в результате гниения, но при действии особых сил. Ф. Бэкон (1561—1626) считал, что мухи, муравьи и лягушки могут самопроизвольно возникать при гниении, однако к вопросу подходил материалистически, отрицая непреодолимую грань между неорганическим и органическим. Р. Декарт (1596—1650) также признавал самопроизвольное зарождение, но отрицал участие в нем духовного начала. По Р. Декарту самозарождение — это естественный процесс, наступающий при определенных (непонятных) условиях.
Оценивая взгляды выдающихся деятелей прошлого, можно сказать, что доктрина самозарождения не подвергалась сомнению вплоть до середины XVII в. Метафизичность воззрений в XVII—XVIII вв. особенно проявлялась в представлениях о неизменности видов и органической целесообразности, которые считались результатом мудрости творца и жизненной силы.
Однако вопреки господству метафизических представлений в XVI-XVII вв. все же происходит ломка догматического мышления средневековья, обостряется борьба против духовной диктатуры церкви, возникает и углубляется процесс познания, который привел в XVIII в. к существенной аргументации против теории абиогенеза и к возбуждению интереса к эволюционизму.
Осуществив в 1665 г. ряд экспериментов с мясом и мухами, Ф. Реди (1626—1697) пришел к заключению, что личинки, возникающие в гниющем мясе, являются личинками насекомых, и что такие личинки никогда не возникнут, если мясо поместить в закрытый контейнер, недоступный для насекомых, т. е. для откладывания ими яиц. Этими экспериментами Ф. Реди опроверг доктрину самозарождения высших организмов из неживого материала. Однако в материалах и рассуждениях Ф. Реди не исключалась мысль о спонтанном самозарождении микроорганизмов и гельминтов в кишечнике человека и животных. Следовательно, сама идея самозарождения еще продолжала существовать.
В 1765 г. Л. Спаланцани (1729-1799) во многих опытах показал, что развитие микробов в растительных и мясных настоях исключается кипячением последних. Он выявил также значение времени кипячения и герметичности сосудов. Его заключение сводилось к тому, что если герметичные сосуды с настоями кипятить достаточное время и исключить проникновение в них воздуха, то в таких настоях микроорганизмы никогда не возникнут. Однако Л. Спа-ланцани не сумел убедить своих современников в невозможности самозарождения микроорганизмов. Идею самозарождения жизни продолжали защищать многие выдающиеся философы и естествоиспытатели того времени (И. Кант, Г. Гегель, X. Гей-Люссак и др.).
В 1861-1862 гг. Л. Пастер представил развернутые доказательства невозможности самозарождения в настоях и растворах органических веществ. Экспериментально он доказал, что источником загрязнений всех растворов являются бактерии, находящиеся в воздухе. Исследования Л. Пастера произвели огромное впечатление на современников. Англичанин Д. Тиндаль (1820-1893) нашел, что некоторые формы микробов очень резистентны, выдерживая нагревание до 5 часов. Поэтому он разработал метод дробной стерилизации, называемый сейчас тиндализацией.
Опровержение доктрины абиогенеза сопровождалось формированием представлений о вечности жизни. В самом деле, если самозарождение жизни невозможно, рассуждали многие философы и ученые, то тогда жизнь вечна, автономна, рассеяна во Вселенной. Но как она попала на Землю? Чтобы ответить на этот вопрос, шведский ученый Аррениус (1859-1927) в начале нашего века (1912) сформулировал гипотезу панспермии, в соответствии с которой жизнь существует во вселенной и переносится в простейших формах с одного небесного тела на другое, включая Землю, под давлением световых лучей. Сторонники этой гипотезы считали, что перенос жизни на Землю возможен и с помощью метеоритов. Однако гипотеза панспермии вызывала возражения в том плане, что в космическом пространстве действуют факторы, которые губительны для микроорганизмов и что эти факторы исключают циркуляцию микроорганизмов за пределами Земной атмосферы. Становилось все более ясным, что жизнь уникальна, что истоки жизни следует искать на Земле.
Еще в XVII-XVIII вв. внимание натуралистов и философов привлекал ряд вопросов, обсуждение которых расшатывало догмы о неизменяемости органического мира. Один из таких вопросов касается изменяемости видов. Тогда для многих мысль о возможном изменении организмов под влиянием климата, пищи, почвы, упражнений и неупражнений органов, гибридизации и других факторов казалась само собой разумеющейся. Например, Ф. Бэкон (1561-1626), Д. Рей (1628-1705), Ж. Бюффон (1707-1788), И. И. Лепехин (1740-1802), Н. Я. Озерецковский (1750-1827) и др. допускали изменение организмов под влиянием климата и почвы, а Ш. Бонна признавал, что паразитические черви произошли от свободноживу-щих червей. Даже К. Линней не исключал изменяемости видов под влиянием почвы и климата, скрещиваний организмов разных видов между собой. Мысль об изменяемости видов поддерживали Эразм Дарвин (1731-1802), К. Ф. Вольф (1733-1794), французские философы-материалисты Д. Дидро (1713-1784), Ж.-О. Ламеттри (1709-1751), П. Гольбах (1723-1789). Допущение изменяемости видов часто сопровождалось верой в наследование организмами приобретенных свойств. Однако мысль об изменяемости видов еще была далека от идеи исторической преемственности видов, развития органического мира от низшего к высшему.
Не меньшее значение в то время имел вопрос о «естественном родстве» организмов. Речь шла о группировке организмов на основе их естественного родства, о допущении, что отдельные организмы могли произойти от общих родоначальников. Например, Ж. Бюффон считал, что могли быть «общие родоначальники» для нескольких семейств, в частности для млекопитающих, им допускалось 38 общих родоначальников. В России мысль о происхождении организмов ряда видов от общих родоначальников развивал П. С. Пал-лас (1741-1811).

<< Предыдущая

стр. 19
(из 34 стр.)

ОГЛАВЛЕНИЕ

Следующая >>