<< Предыдущая

стр. 6
(из 34 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

Происхождение клетки
Диаметр (в мкм)
Объем (в мкм3)
Клетка печени человека
20
4000
Малая клетка тимуса
6
120
Клетка меристемы (корешок лука)
17
2600
Клетка паренхимы плода растения
1000
1 х 108

1. Мембранная система.
2. Цитоплазматический мат-рикс (основное вещество клеток).
3. Клеточные органеллы (внутриклеточные компартменты).
4. Клеточные включения.
Мембранная система. Эта система представлена клеточной плазматической (цитоплазматической) мембраной, цитоплазматической (эндоплазматической) сетью (рети-кулом) и пластинчатым комплексом Гольджи.
а) Плазматическая (цитоплаз-матическая) мембрана имеет толщину 8-12 нм и состоит из трех слоев, два из которых являются белковыми слоями толщиной по 3 нм каждый, а третий (внутренний) — двойным фосфолипидным слоем толщиной 6 нм (рис. 47). Плазматическая мембрана является полупроницаемой структурой. Через нее в клетку входят питательные вещества и выходят все «отходы» (продукты секреции). Она создает барьер проницаемости. В результате этого плазматическая мембрана регулирует обмен различными веществами между клеткой и внешней средой. В плазматической

мембране содержатся многие важные ферменты, системы активного транспорта ионов натрия и калия при помощи АТФазы, а также системы транспорта аминокислот.
На поверхности плазматической мембраны обнаруживают ряд специальных образований в виде микроворсинок и ресничек. Микроворсинки очень часты в эпителии кишечника и почек. Реснички — это своеобразные выросты цитоплазмы. У эритроцитов мембрана является гладкой (элементарная мембрана). У некоторых одноклеточных организмов-эукариотов плазматическая мембрана также содержит реснички (микроворсинки), различные выпячивания, впячивания и выросты, переходящие в пузырьки. На внешней поверхности клеток животных обнаружены гликопротеиды как компоненты плазматической мембраны.


Предполагают, что поверхностные гликопротеиды обеспечивают адгезионную способность клеток в тканях, и, следовательно, слипание однотипных клеток. В мембранах эритроцитов содержится гликопротеид, получивший название гликофорина (м. м. 30 000). Этот гликопротеид состоит из 130 аминокислотных остатков и большого количества (60% всей молекулы) остатков сахара. Кроме того, в эритроцитарной мембране содержится белок спектрин, молекулы которого формируют скелет мембраны.
У клеток растений наружной структурой служит жесткая клеточная стенка, построенная из молекул целлюлозы, создающих очень прочные волокна, погруженные в матрикс из других поли-сахаридов и полимерного вещества лигнина. Клетки наружних слоев растений иногда покрыты очень тонким слоем восковидно-го вещества. На поверхности плазматических мембран имеются электрически заряженные группы, из-за которых поддерживается разность электрических потенциалов на мембранах. На поверхности плазматических мембран имеются также специфические рецепторы (участки распознания) для гормонов и других соединений. Кроме того, здесь же локализованы особые рецепторы, ответственные за индивидуальную тканевую совместимость. Считают, что рецепторные участки формируются гликопротеидами и ганглиозидами.
б) Цитоплазматическая (эндоплазматическая) сеть (рети-кулум) представлена пронизывающими однослойными мембранными полостями (трубочками, цистернами, вакуолями) разных размеров, заполненными белковыми гранулами (рис. 48).
Открыта К. Портером в 1945 г. Толщина трубочек и других структур этой сети равна 5-6 нм.
Различают гранулярный (шероховатый) эндоплазматический ретикулум, который выстлан множеством рибосом диаметром порядка 21-25 нм и молекулярной массой 4 х 106, служащих центрами синтеза молекул белков, и агранулярный (гладкий) эндоплазматический ретикулум, на котором нет рибосом, но на котором синтезируются липиды и углеводы. Степень насыщенности гранулярной эндоплазмати-ческой сети рибосомами определяет степень интенсивности синтеза белков. У человека и животных агранулярной сетью богаты клетки коры надпочечников, яичников и семенников, печени, скелетных мышц.
Цитоплазматическая сеть без перерыва соединена с цитоплаз-матической мембраной, ядерной мембраной и пластинчатым комплексом Гольджи. Это позволяет синтезируемым белкам проходить в комплекс Гольджи, откуда после специальной обработки они выводятся из клетки или идут на построение лизосом.
Плазматическая мембрана, мембрана эндоплазматической сети, а также ядер, митохондрий и хлоропластов (см. ниже) представляют собой чрезвычайно сложные структуры, обладающие рядом важ-.нейших биологических свойств. Многие мембраны содержат ферменты, транспортные системы, с помощью которых осуществляется перенос молекул питательных веществ и неорганических ионов внутрь клеток и внутри клеток, а также вывод из клеток продуктов жизнедеятельности. Мембранные структуры способны к самовосстановлению, если в них по каким-то причинам возникают повреждения.
В процессе искусственного растирания или гомогенизации клеток с экспериментальными целями образуются мелкие частицы диаметром 50—150 нм, состоящие из фрагментов эндоплазматическо-го ретикулума и плазматической мембраны. Эти структуры получили название микросом и их широко используют в лабораторной работе для решения тех или иных вопросов молекулярной организации клеток.


в) Комплекс Гольджи. Этот комплекс, называемый еще пластинчатым, был открыт итальянцем Камилло Гольджи еще в 1898 г. Он присутствует во всех клетках, кроме эритроцитов и сперматозоидов, и представляет собой систему дискообразных однослойных мембран (мембранных пузырьков или цистерн), локализующихся рядом с гладким эндоплазмати-ческим ретикулом и ядром (рис. 49). Часто в клетках обнаруживают несколько таких комплексов (диктиосом), размеры которых составляют 30-60 нм. Структурными молекулами, поддерживающими структуру цистерн, являются ферменты, вовлеченные в процессинг оли-госахаридов, белки, являющиеся аутоантителами, а также белки, являющиеся компонентами цитоскелета. Основная функция комплекса Гольджи заключается в том, что он является местом упаковки (уплотнения) белков, поступающих с рибосом, а также присоединения к белкам углеводов (образования гликопротеидов), а к полисахаридам — сульфатных групп с последующим транспортом их к другим клеточным структурам или за пределы клетки (экзоцитоз). В клетках печени этот комплекс участвует в выделении в кровь липопротеидов. Как отмечено выше, он участвует также и в формировании лизосом.
Цитоплазматический матрикс. Этот структурный компонент является основным веществом (цитоплазмой, гиалоплазмой) клетки. Первые электронномикроскопические изображения цитоплазмы были получены шведским ученым Ф. Шестрандом еще в 1955 г. Различают эктоплазму — вещество, располагающееся ближе к цитоплазматической мембране (твердое тело) и эндоплазму, отстоящую к центру клетки от эктоплазмы (более жидкое состояние) и представляющую собой цитозоль. Консистенция цитозоля приближается к гелю, В нем растворены многие ферменты и белки, обеспечивающие связывание и транспорт питательных веществ, микроэлементов и кислорода. Здесь же находятся аминокислоты и нуклеотиды, а также различные метаболиты (промежуточные продукты биосинтеза и распада макромолекул). Наконец, в цитозоле присутствуют различные коферменты, а также АТФ, АДФ, ионы ряда неорганических солей (K+, Mg2+, Са2+, C1-, НСО-2 3, НРО4-2), тРНК.
В цитоплазме содержатся микрофиламенты (нити) толщиной 4-5 нм и микротрубочки, представляющие собой полые цилиндрические структуры диаметром 25 нм, а также филаменты промежуточных размеров. Эти структуры составляют жесткую конструкцию (каркас) в клетке, называемую цитоскелетом и определяющую внешний вид и форму клеток. Микрофиламенты состоят из белка, сходного с сократительным белком актином.
Объединяясь, микрофиламенты формируют пучки, в которые входят дополнительные белки (анкерин, спектрин и другие). Основная функция микрофиламентов заключается в обеспечении сократительных процессов клеток, в упрочении мембран. Микротрубочки построены из белков a- и b-тубулина, а также g-тубулина. Для микротрубочек характерен ряд функций. Формирование микротрубочек происходит в интерфазе клеток в так называемых центрах организации микротрубочек (ЦОМ), которые «окружают» центриоли, в результате чего предполагают, что центриоли являются ЦОМ (рис. 50). В каждом ЦСУ содержится по 10-13 молекул g-тубулина и примерно по 7 молекул других белков, включая ди-мер a/b-тубулина. Эти белки формируют структуру, которая образует микротрубочный «ансамбль». Их значение до конца не выяснено, но предположительно заключается в том, что они обеспечивают перемещение клеточных органелл, включая хромосомы, внутри клеток.
В составе цитоплазмы обнаруживают ферменты, полисахариды, АТФ, тРНК, ионы Са, Na, К и других химических элементов.


Основная функция цитоплазматиче-ского матрикса заключается в том, что он является внутренней средой клетки, поддерживающей мембранные системы, орга-неллы и включения. В нем осуществляются гликолиз, активация аминокислот и другие реакции. Цитоскелет выполняет опорную функцию. Микрофиламенты способствуют упрочению мембранной системы, а микротрубочки, как отмечено выше, обеспечивают перемещение клеточных органелл и транспорт химических соединений из одних отсеков клетки в другие. Цитоскелет имеет значение также в делении клетки.
Клеточные органеллы. Эти структуры представлены ядром, хромосомами, ядрышком, центриолями, митохондриями, рибо-сомами, лизосомами. Они характерны за некоторыми исключениями как для клеток животных, так и для клеток растений.
а) Ядро в клетке имеет форму и размеры, зависящие от формы, размеров и функций клетки. В клетках эукариотических организмов содержится, как правило, по одному ядру, реже по два и более. В зрелом состоянии эритроциты млекопитающих и клетки ситовидных трубочек покрытосеменных растений лишены ядер, тогда как клетки скелетных мышц позвоночных и млечных сосудов растений являются многоядерными. Для инфузорий характерно наличие двух ядер — одно небольшое (микронуклеус) и одно крупное политенное (макронуклеус).
Обычно ядро имеет округлую, палочковидную, четковидную вытянутую и другие формы. Размеры его колеблются от 2 до 100 мкм, а объем составляет около 65 мкм3. Особенно крупные ядра характерны для половых клеток (размером до 500 мкм). Отношение объема ядра к объему цитоплазмы называют ядерно-плазменным отношением, которое у клеток всех типов обычно постоянно.
Строение ядра характеризуется чрезвычайной сложностью, хотя принципиально одинаково в клетках всех эукариотических организмов. В случае животных клеток ядро располагается в центре клетки. Напротив, в клетках растений оно имеет пристеночную локализацию. Однако положение, форма и размеры ядра могут меняться в зависимости от интенсивности метаболизма. В ядре

содержатся хромосомы и ядрышки (см. ниже). Благодаря им ядро плотно заполнено ДНК, РНК и белками. Содержимое ядра иногда называют нуклеоплазмой или кариоплазмой. Она отделена от цитоплазмы ядерной мембраной, построенной из двух слоев (наружного и внутреннего) толщиной по 7 нм каждый и имеющей поры диаметром 40—100 нм. Поры занимают около 5% площади ядра. Через ядерные поры синтезируемая в ядре РНК выходит в цитоплазму, где она участвует в трансляции генетической информации (синтезе белков).
Ядерная мембрана и ядерные поры объединены с мембранной системой клетки, в результате чего клетка, по существу, канализирована различными проходами, обеспечивающими двухстороннее движение веществ в клетке, начиная от плазматической мембраны. В порах обнаружены глобулярные и фибриллярные белковые структуры. Количество пор зависит от вида клеток и обычно увеличивается в 8-периоде. Между мембранными слоями имеется так называемое перинуклеарное пространство шириной 20—60 нм. Наружная ядерная мембрана часто переходит в эндоплазматическую сеть. Когда клетки делятся, ядерная оболочка исчезает, а после деления восстанавливается. Ядерное вещество (кариоплазма) — плотный коллоид.
Таблица 4
Количество хромосом в соматических клетках
отдельных организмов

Вид животных м растений

Количество хромосом (в диплоидиом наборе)
Малярийный плазмодий
Plasmodium malariae
2
Плодовая мушка
Drosophila melanogaster
8
Комнатная муха
Musca domestica
12
Сазан
Cyrpinus carpio
104
Лягушка зеленая
Rana esculenta
26
Голубь
Columba livia
80
Кролик
Lepus cuniculus
44
Шимпанзе
Antropopitecus pan
48
Человек
Homo sapiens
46
Картофель
Solanum tuberosum
48
Рожь
Secale cereale
14
Пшеница (мягкая)
Triticum
42
Кукуруза
Zea mays
20

Важнейшая функция ядра заключается в том, что оно является центром управления в клетке, в нем происходит синтез ДНК, РНК и ядерных белков.
б) Хромосомы. Хромосомы располагаются в ядре. Их название введено в литературу В. Вальдейлом в 1883 г. Они имеют форму палочек, нитей, петель. Для каждой хромосомы характерны индивидуальные особенности, касающиеся длины и положения перетяжки (центромеры) по длине хромосомы. Каждая из митотичес-ких индивидуальных хромосом состоит из двух сестринских хроматид, удерживаемых центромерой. В зависимости от локализации центромер различают метацентрические, субметацентричес-кие, акроцентрические и телоцентрические хромосомы (рис. 51). Количество хромосом постоянно в ядрах соматических клеток, где они находятся в парах. Диплоидный набор хромосом называют кариотипом (от греч. caryon — ядро, type — форма, тип). Для разных организмов характерны разные по количеству диплоидные наборы хромосом (табл. 4). В зависимости от строения хромосомы человека классифицируют на группы (рис. 52).


Когда ядра соматических метафазных клеток окрашивают основными красителями, то при микроскопии препаратов в ядерной зоне обнаруживают глыбки и гранулы окрашенного вещества, получившего название хроматина. Именно из этого вещества во время деления клеток организуются хромосомы. При изучении таких микроскопических препаратов отмечают, что некоторые районы хромосом окрашены очень интенсивно, Другие слабее. Интенсивно окрашивающийся хроматин получил название гетерох-роматина, менее окрашивающийся — эухроматина. Последний содержит области, на которых очень активно синтезируется РНК.
Исследование хромосом типа ламповых щеток, содержащихся в овоцитах многих животных и политенных хромосомах, обнаруживаемых в клетках насекомых, показало, что они имеют петельную структуру. Эта структура характерна, вероятно, для организации хроматина у всех организмов.
В клетках многих видов организмов гетерохроматин концентрируется в основном в районах, фланкирующих центромеры.
Половые хромосомы часто почти полностью представлены гете-рохроматином. Гетерохроматином богаты районы повторов последовательностей ДНК (см. гл. X).
Когда гетерохроматин исследуют под электронным микроскопом, то отмечают, что он построен из плотноупакованных хрома-тиновых нитей диаметром 25 нм. Эухроматин составлен из менее плотноупакованных нитей, но такого же диаметра. Гетерохроматин сохраняется в высококонденсированной форме на протяжении всего клеточного деления, тогда как эухроматин менее конденсирован и невидим в интерфазе при исследовании хромосом в световом микроскопе. Имеющиеся данные показывают, что большинство исследованных генов эукариот локализовано в эухроматиновых (менее конденсированных) районах хромосом, тогда как гетерохроматин (высококонденсированный) генетически не активен.
Химический состав хроматина довольно прост. Он состоит из ДНК (15%), белков (75%), а также некоторого количества РНК (10%). Различают хромосомные белки двух типов — основные белки (положительно заряженные при нейтральном рН), называемые гисто-нами, и гетерогенные белки, по большей части кислые (отрицательно заряженные при нейтральном рН), называемые негистоновыми. Молекулярная масса гистонов составляет 11 000—21 000. Гистоны являются основными белками по той причине, что содержат позитивно заряженные аминокислоты аргинин и лизин в количестве от 20% до 30% аминокислотных остатков белка. Группы R аргинина и лизина позволяют гистонам действовать в качестве поликатионов и взаимодействовать с ДНК, которая является полианионной благодаря ее отрицательно заряженным фосфатным группам. Другими словами, по причине протонирования боковых групп R-остатков аргинина и лизина гистоны, соединяясь с отрицательно заряженной двухцепочечной ДНК, образуют комплексы ДНК-гистоны.
Гистоны присутствуют в хроматине всех высших эукариотов в количествах, эквивалентных количествам ДНК. У всех высших растений и животных они представлены пятью главными белками, обозначенными символами HI, Н2а, Н2в, НЗ и Н4. Количество ДНК и гистонов в хромосомах эквивалентно. Они присутствуют в клетках всех типов, кроме сперматозоидов некоторых организмов. В последних обнаруживают основные белки, называемые протами-нами. Все пять гистонов присутствуют в молярных соотношениях 1 HI : 2 Н2а : 2 Н2в : 2 НЗ : 2 Н4. Для них характерны различия по молекулярной массе и аминокислотному составу. Гистон HI богат лизином (29%), гистоны Н2а и Н2в богаты как лизином, так и аргинином, а гистоны НЗ и Н4 богаты аргинином. Для гистонов НЗ и Н4 характерно сходство последовательностей аминокислот; для других гистонов заметное сходство отсутствует. Данные о константности гистонов Н2а, Н2в, НЗ и Н4 в клетках организмов разных видов позволяют предположить, что гистоны имеют значение в упаковке ДНК. Кроме того, они не специфически вовлечены в регуляцию экспрессии генов (см. гл. XII).
Негистоновая белковая фракция хроматина состоит из различных очень гетерогенных белков. Состав этой фракции широко варьирует в клетках разных организмов даже одного и того же вида. Предполагают, что негистоновые белки также принимают участие в регуляции экспрессии специфических генов.


Каждая хроматина содержит одиночную гигантскую двухцепочечную молекулу ДНК, вытянутую по всей длине хромосомы. Это заключение основано на данных о размерах самых больших молекул ДНК в ядрах клеток дрозофилы и других организмов, а также на данных об общем количестве ДНК, присутствующей в самых больших хромосомах дрозофилы. Наиболее крупные молекулы ДНК, выделенные из хромосом, имеют контурную длину порядка 1,2 см, что соответствует молекулярной массе 2,4—3,2 х 1010, т. е. от a/y до '/4 размера самой крупной молекулы соответствующей хромосомы. На концах хромосом человека имеются повторы азотистых оснований, получившие название теломер. Количество теломерных повторов связывают с возрастом организма.
Количество ДНК и гистонов в хроматине эквивалентно. Будучи специфически связанными с ДНК, гистоны принимают участие в формировании основных структурных субъединиц хроматина (хромосом) — нуклеосом (рис. 53), которые являются элементарными единицами организации хроматина. Каждая нуклеосома представлена сегментом ДНК диаметром около 30 нм и длиной 146-240 пар оснований, намотанной 1,8 раз вокруг гистонового стержня, состоящего из пары гистонов. Нуклеосома закручена в сложную нить 2 раза при участии гистона HI в качестве кросслинкера, что дает структуру с упаковочным отношением 25:1, близким к интерфазному хроматину. Чтобы сформировалась митотическая хромосома из нити длиной 30 нм, необходима дальнейшая компактизация с помощью специфических негистоновых белков, приводящая к формированию скелета хромосомы. Установлено, что нуклеосомы являются репрессорами инициации транскрипции в эукариотических клетках. Нарушение структуры нуклеосом ведет к освобождению транскрипции от репрессии.
В метафазных хромосомах ДНК организуется в петли длиной 30 000-40 000 пар оснований, а каждая петля хроматина прикрепляется к гистоновому скелету хромосомы на его основании в результате воздействия ДНК + белок или ДНК + РНК.
Гистон HI связан с линкерной ДНК, принимая участие в стабилизации сверхскрученных ДНК между нуклеосомами, но способ этой связи полностью еще не выяснен. Длина сегментов ДНК (линкеров), которые соединяют нуклеосомы, составляет от 15 до 100 нуклеотидных пар в зависимости от типа клетки. Результаты Х-дифракции кристаллов изолированных нуклеосом указывают на то, что они имеют дисковидную структуру и состоят из двух симметричных половин. ДНК каждой половины намотана в форме суперспирали на поверхность гистоновых стержней.
Для хромосом характерно наличие отдельных сайтов, которые определают их хрупкость, что создает условия для нарушений структуры хромосом, сопровождающихся хромосомными мутациями (см. гл. X).
в) Ядрышко — это очень мелкая структура диаметром 1—5 мкм, которая локализуется в ядре. Количество ядрышек бывает разным — от одного до нескольких. Центральная часть в ядрышке представлена фибриллярной частью (цепи, ДНК- ядрышковые организаторы и рибонуклеопротеиды) и гранулярной (формирующиеся субъединицы рибосом). Ядрышко является местом синтеза рРНК. Матрицей для синтеза рРНК является ДНК ядрышкового организатора. Синтезируемая рРНК объединяется с белком и образующиеся рибонуклеопротеиды служат затем материалом для сборки из них субъединиц рибосом. Последние через ядерные поры направляются в цитоплазму, участвуя там в формировании рибосом, на которых происходит затем синтез белков.
г) Центриоли представляют собой гранулярные цилиндры диаметром около 0,15 мкм и длиной 0,5 мкм, локализующиеся парами в клетке около ядра. Эти пары называют диплосомами (центросома-ми). Структурно они представляют систему мембранных трубочек. Диплосома окружена другими микротрубочками, называемыми центросферой. Обе эти структуры образуют клеточный центр.
Функцией клеточного центра является организация цитоскеле-та клеток. Кроме того, центриоли участвуют в делении клеток, расходясь к полюсам клетки. Микротрубочки, протягивавшиеся взаимно, образуют митотическое веретено.


В клетках растений этой органел-лы нет.
д) Митохондрии присутствуют во всех клетках организмов, которые используют для дыхания кислород. В одной клетке может находиться 50-5000 митохондрий. Они имеют форму палочек, нитей или гранул (рис. 54), а их размеры достигают 7 мкм.
Митохондрии образованы двумя мембранами — наружной и внутренней, между которыми образуется пространство шириной 10—20 нм. Внутренняя мембрана формирует складки (кристы), которые погружены в матрикс, представляющий собой молекулярное содержимое митохондрий. Наружная мембрана проницаема для низкомолекулярных соединений. Проникновение веществ во внутреннее пространство (матрикс) митохондрий контролируется внутренней мембраной. Содержимое митохондрии составляют белки, фосфолипиды, ДНК, РНК и рибосомы, которых значительно меньше, чем рибосом, локализованных в цитоплазме. Наличие этих структур обеспечивает собственную митохондриальную белоксинтезирующую систему. Митохондрии способны к самовоспроизведению путем деления или почкования в период 8-фазы и других фаз клеточного цикла.
Митохондрии имеются также у простейших. В частности, ти-паносомы содержат по одной митохондрии.
Митохондрии представляют собой «силовые станции», в которых происходят основные процессы получения и накопления энергии путем окисления молекул пищи (окислительное фосфорилиро-вание) для образования АТФ. В матриксе содержатся ферменты, а реакции окисления проходят на поверхности внутренней мембраны. Энергетические потребности клеток определяют уровень размножения митохондрии.
В клетках растений вместо митохондрии содержатся пластиды. Среди пластид различают хлоропласты, которые содержат хлорофилл, лейкопласты (бесцветные пластиды), в которых происходит накопление крахмала, и хромопласты, в которых происходит синтез пигмента плодов. У пурпурных бактерий имеются хроматофоры.
Для хлоропластов характерно мембранное строение (рис. 55). Встречаясь в клетках в количестве около 40 экземпляров на клетку, они имеют своеобразную форму двояковыпуклых линз и размеры

5-10 мкм. Каждый хлоропласт окружен двойной мембраной. Наружная мембрана является гладкой, состоя из белковых субъединиц, а внутренняя — складчатой. Внутренняя мембрана содержит хлорофилл, а также ферменты, синтезирующие АТФ и органические соединения с помощью АТФ. Кроме того, в хлоро-пластах имеется некоторое количество ДНК и РНК небольших по размерам рибосом, что обеспечивает собственную хло-ропластную белоксинтезирующую систему.
Для пластид характерны переходы из одного типа в другой. Например, зеленые хлоропласты листьев переходят в хромопласты (осенью, когда изменяется окраска листьев), а лейкопласты зеленеющих клубней картофеля переходят в хлоропласты.
е) Рибосомы представляют собой гранулы, расположенные в ци-топлазматическом матриксе и связанные с мембранами цитоплаз-матической сети. Их размеры составляют 15—Збнм в диаметре. Они построены на одну треть из белка и на две трети из РНК (двух субъединиц). Количество рибосом в клетках очень большое. Например, в одной бактериальной клетке (кишечной палочке) их содержится около 6000 экземпляров. Рибосомы образуют группы, называемые полирибосомами.
Функции рибосом заключаются в том, что на них осуществляется синтез белков.
ж) Лизосомы представляют собой мельчайшие пузырьковидные образования, окруженные однослойной мембраной и содержащие ферменты. Их размеры составляют 0,2-0,8 мкм. Лизосомы обеспечивают изоляцию гидролитических ферментов клетки.
В лизосомах обнаружено более 40 различных гидролитических ферментов (протеиназ, нуклеаз, липаз, гликоидаз и др.), осуществляющих внутриклеточное расщепление макромолекул, проникающих в клетки посредством фагоцитоза и пиноцитоза. Лизосомы чрезвычайно разнообразны по строению и частным функциям. Предполагают, что они образованы мембранами комплекса Гольджи и представляют собой систему удаления из клеток конечных продуктов обмена. Повреждение лизосом сопровождается растворением клеток. Следовательно, благодаря лизосомам происходит защита клеток от собственных ферментов. В эволюционном плане они являются аналогами пищеварительных вакуолей одноклеточных организмов.
з) Пероксисомы (иногда их называют микротельцами) представляют собой образованные цистернами эндоплазматической сети пузырьки размером 0,3-1,5 мкм, ограниченные однослойной мембраной. Эти пузырьки содержат каталазу и некоторые оксидазы. Обильными по содержанию пероксисом являются эпителии печени и почек. Функция пероксисом заключается в том, что в них происходит разрушение клеточных перекисей и холестерина. Кроме того они содержатся также в клетках зеленых листьев растений. Известны также глиоксисомы, содержащиеся в проростках семян масличных растений.
Включения. В клетках животных включения представлены жировыми каплями, гранулами гликогена, зимогеновыми гранулами (депо ферментов в клетках поджелудочной железы). Особенно богаты жиром у млекопитающих клетки соединительной ткани. Гликогена много в клетках поперечно-полосатых мышц, печени и в нейронах. Встречаются также белковые включения в цитоплазме яйцеклеток, печени, в теле простейших. Следует отметить, что некоторые клетки животных содержат в качестве включений пигменты. Например, в клетках коркового вещества надпочечников накапливаются липохромы. Пигментами являются также гемоглобин и меланин, а также ретинин (в зрительном пурпуре сетчатки глаза).
В клетках растений, например, таких как картофель, злаковые, наиболее частым включением является крахмал. В качестве включений в клетках растений встречаются также жиры, содержание которых очень большое в семенах масличных культур. Очень широко распространены пигменты.
Участки (компартменты) цитоплазматического матрикса, лишенные мембран и клеточных органелл, получили название цитозолл.

§17 Химический состав

Клеточное вещество является сложным полифазным коллоидом, т. е. представляет собой систему из двух несмешивающихся фаз. Одна из этих фаз структурно является цитоплазматическим матриксом и выполняет роль водной фазы с переходами от жидкого до твердого состояния, тогда как другая является мембранной системой и выполняет роль относительно жидкой фазы. Цитоплазма практически бесцветна, имеет характер раствора.
В элементном составе клетки насчитывают более 70 элементов, среди которых наиболее частыми являются кислород, углерод, водород, азот. На долю кислорода приходится 65% общей массы, на долю углерода — 18%, водорода — 10%, азота — 3%. После этих элементов идут кальций, фосфор, калий, сера, натрий, хлор. Поскольку все эти элементы встречаются в клетках в большом количестве, часто их называют макроэлементами. Марганец, медь, иод, кобальт и другие, обнаруживаемые в микроколичествах, называют микроэлементами.
Химические элементы, входящие в состав клеток и обладающие биологическими функциями, называют биогенными.
Как правило, содержание катионов и анионов отличается от содержания их в той среде, в которой находятся клетки. Например, концентрация К+ в мышечных клетках в несколько десятков раз выше, чем в крови. Концентрация солей в клетках определяет буферность ее содержимого, под которой понимают уровень концентрации водородных ионов в клетках (рН).
Химические элементы участвуют в построении вещества клеток в виде ионов (катионов и анионов) или химических соединений. Важными являются катионы К+, Na+, Са2+, Mg2+. Что касается анионов, то ими являются Н2РО4-, С1- и HCO3-.
Соединяясь химическими связями, группы атомов образуют так называемые малые органические молекулы, которыми являются аминокислоты, нуклеотиды, сахара и жирные кислоты. Из этих малых молекул в клетках формируются макромолекулы в виде белков, нуклеиновых кислот, углеводов и липидов.
Клетки построены как из неорганических, так и органических соединений.
Неорганическими соединениями клетки являются вода и минеральные соли.
Вода составляет около 70% массы клетки. У отдельных организмов, например медуз, содержание превышает 95% . Для водных организмов характерна чрезвычайная приспособленность к воде, поскольку высокая теплоемкость воды представляет собой непрерывно действующий «тепловой» буфер, который обеспечивает в общем постоянную температуру тела независимо от температуры воздуха. В случае растений очень прочное сцепление молекул воды способствует переносу растворенных питательных веществ из корней в листья при транспирации. Наконец, на молекулярном уровне у наземных и водных животных, равно как и у растений, вода определяет ряд важных свойств макромолекул.
Таблица 4а
Химические элементы в клетках человека
(в % к сухой массе)

Кислород
65
Марганец
0,0003
Углерод
18
Медь
0,0002
Водород
10
Иод
0,0004
Азот
3
Кобальт
Следы
Кальций
1,5
Цинк
Следы
Фосфор
1
Молибден
Следы
Калий
0,35
Никель
Следы
Сера
0,25
Алюминий
Следы
Натрий
0,15
Барий
Следы
Хлор
0,15
Стронций
Следы
Магний
0,05
Титан
Следы
Железо
0,004
Литий и др.
Следы

Табл. 4б
Основные химические соединения в клетках человека
(в % к сырой массе)

Вода
75-85
Белки
10-20
Нуклеиновые кислоты
1-2
Липиды
1-5
Углеводы
0,2-2

В теле человека вода составляет 60%, из которой 40% приходится на внутриклеточную, а 20% — на экстраклеточную воду. Плазма крови содержит 5% экстраклеточной воды (рис. 56).
Вода имеет исключительно важное значение для жизнедеятельности клеток, представляя собой среду, в которой осуществляются важнейшие реакции, лежащие в основе синтеза и распада веществ. Кроме того она является растворителем различных химических веществ. Вещества, хорошо растворимые в воде получили название гидрофильных (от греч. hydros — вода, phileo — люблю),

плохо растворимые называют гидрофобными (от греч. hydros- вода, phobos — боязнь). В воде хорошо растворяются хлористый натрий, сахара, простые спирты, альдегиды, кетоны. Под влиянием растворенных веществ вода может изменять свои свойства, в частности, могут изменяться температура замерзания, температура кипения, давление пара и осмотическое давление воды. Эта особенность воды имеет очень важное биологическое значение. Например, рыбы в пресной воде при температуре ее замерзания сохраняют свою активность, причем по той причине, что концентрация веществ, растворенных в крови рыб, является большей, чем в воде, и это исключает переохлаждение, а затем и замерзание их крови.
Для воды характерно то, что она обладает некоторой способностью к обратимой ионизации, в ходе которой она распадается на ионы водорода (Н+) и ионы гидроксила (ОН-).
Для изменения концентрации ионов Н+ в любом водном растворе используют так называемую шкалу рН, с помощью которой обозначают концентрацию водородных ионов (Н+) в водных растворах, кислотность которых находится между 1,0 МН+ и 1,0 МОН-. Так значение рН для нейтрального раствора составляет 7,0, тогда как растворы, имеющие рН выше 7,0, — это щелочные растворы, а меньше 7,0 — это кислые растворы. Например, рН питьевой воды составляет 9,0, нашатырного спирта — 12,0, черного кофе — 5,0 лимонного сока — 2,0, а желудочного сока — 1,0. Величины рН характерны для всех внутриклеточных и внеклеточных жидкостей в организме, причем постоянство концентрации водородных ионов поддерживается буферными системами, которые у млекопитающих представлены фосфатной и бикарбонатной системами. Величины рН всех жидкостей организмов исключительно постоянны. Их изменения чрезвычайно неблагоприятны для организмов, поскольку даже небольшие сдвиги рН характеризуются значительным падением каталитической активности ферментов.
В воде под влиянием ферментов происходят реакции гидролиза (от греч. hydros — вода, lysis — расщепление) белков и других соединений. Вода принимает участие также в выведении из клеток продуктов обмена. Наконец, она поддерживает тепловой режим клетки.
Минеральные соли входят в состав цитоплазмы. Встречаются калиевые, натриевые, магниевые соли, соли серной, соляной, фосфорной и других кислот. Важнейшая роль минеральных солей заключается в определении ими кислотно-щелочного состояния протоплазмы. Они необходимы также для размножения клеток.
Органическими (углеродсодержащими) соединениями клетки являются белки, нуклеиновые кислоты, углеводы, липиды и АТФ. Как уже отмечено, молекулы этих соединений часто называют биологическими молекулами, а из-за их крупных размеров — макромолекулами.
Поскольку все органические соединения клетки содержат углерод, то принято считать, что жизнь на Земле построена на углеродистой основе. Замечательной особенностью углерода является то, что его атомы очень легко образуют ковалентные связи с другими атомами, в результате чего он больше других элементов способен образовывать большие молекулы. До некоторой степени такой способностью, но меньшей, обладает и кремний, что явилось основанием к известным предположениям о существовании жизни на других планетах, но на кремниевой основе.


Белки, или, как их еще называют, протеины (от греч. protos — первостепенный), являются наиболее сложными химическими соединениями, характеризующимися большой молекулярной массой. В состав всех известных белков входят углерод, водород, азот и кислород. В большинстве белков находят серу, а в некоторых белках — фосфор, железо, цинк и медь. Будучи макромолекулами, они представляют собой линейные полимеры, в которых мономерами являются аминокислоты, каждая из которых состоит из аминогруппы (-NH2), карбоксильной группы (-СООН), атома водорода и R-группы, присоединенной к атому углерода, который называют tt-углеродным атомом. Благодаря наличию аминогрупп и карбоксильных групп аминокислоты способны реагировать друг с другом и образовывать между собой ковалентные связи. В частности, аминокислоты соединяются одна с другой посредством соединения аминогруппы одной аминокислоты с карбоксильной группой другой аминокислоты. Возникающую между аминокислотами связь называют пептидной (амидной), а несколько соединений аминокислот называют пептидом. Т.к. первоначально образующийся дипептид содержит реакционноспособные аминогруппу и карбоксильную группы, то к нему способны присоединиться другие аминокислоты, образуя полипептид (белок). Обычно цепь из трех аминокислот называют трипептидом, а цепь из многих соединенных аминокислот называют полипептидной цепью. Следовательно, пептиды — это цепочки аминокислот. Белок может состоять из одной полипептидной цепи или нескольких. Например, миоглобин состоит из одной цепи, тогда как гемоглобин — из двух цепей одного типа и двух цепей другого типа.
Для полипептидных цепей характерна неразветвленная структура. Молекула белка представляет собой, по существу, неопределенно длинные цепи аминокислот, связанные пептидными связями:



где R-группы (боковые группы, цепи) являются радикалами, каждый из которых состоит из гидроксильной (ОН-), сульфгидриль-ной (SH-) и других групп и которые являются частью молекулы. Боковые R-группы, будучи разными по структуре, электрозаряду и растворимости в воде, определяют различия между аминокислотами.
Для аминокислот характерна ассиметричность, в результате чего различают L- и D-аминокислоты. В составе клеточных белков имеются только L-аминокислоты, известно 20 L-аминокислот. Эти аминокислоты часто называют стандартными (основными, нормальными), т. к. известны и еще другие аминокислоты, которые присутствуют в организмах, но не обнаруживаются в большинстве их белков. Такие нестандартные аминокислоты встречаются в коллагене (4-гидроксипролин и 5-гидроксилизин), миозине (N-метил-лизин), в протромбине (g-карбоксиглутаминовая кислота) и в эластине (десмозин). Предполагают, что L-аминокислоты существуют около 2 млрд лет. Из них построены белки всех известных к настоящему времени организмов. Различия между разными L-аминокис-лотами определяются боковыми R-группами, присоединенными к альфауглероду. Кроме пептидов, образующих белки, существует много пептидов, встречающихся в организмах животных и человека в виде свободных соединений, не связанных с белками. Такими пеп-тида^яи являются некоторые гормоны (инсулин, глюкагон и другие). Поскольку R-группы характеризуются разной степенью полярности (разной способностью взаимодействовать с водой при рН около 7,0), то аминокислоты классифицируют на аминокислоты, содержащие неполярные R-группы (аланин, валин, лейцин, изолейцин, пролин), полярные незаряженные R-группы (глицин, серии, треонин, цисте-ин, тирозин, аспарагин, глутамин), отрицательно заряженные (кислые) R-группы (аспарагиновая и глутаминовая кислоты), положительно заряженные (основные) R-группы (лизин, аргинин, гистидин).
Белки различаются между собой по молекулярной массе, которая для большинства из них лежит в пределах 6000-1 000 000.
Белки различаются по составу на простые и сложные. Простые белки состоят только из аминокислот, содержа 50% углерода, 7% водорода, 23% кислорода, 16% азота. В состав некоторых простых белков может входить сера в небольшом количестве.
Сложные белки помимо аминокислот содержат в своем составе другие соединения как органические, так и неорганические. Эту небелковую часть молекулы сложного белка называют простетической группой. Сложными белками являются нуклеопротеиды, липопротеиды, фосфопротеиды, металлопротеиды и гликопротеиды (табл. 5).
Таблица 5
Перечень некоторых сложных белков

Вид сложного белка
Простатическая группа
Нуклеопротеиды:

Рибосомы
РНК
РНК-содержащие вирусы

Гликопротеиды:

g-глобулин
Гексозамин, галактоза, сиаловая кислота
Липопротеиды:

Липопротеиды плазмы
Фосфолипиды, холестерин, нейтральные липиды
Фосфопротеиды:

Казеин
Фосфатная группа + остаток серина
Гемопротеиды:

Гемоглобин
Железопротопорфирин

<< Предыдущая

стр. 6
(из 34 стр.)

ОГЛАВЛЕНИЕ

Следующая >>