<< Предыдущая

стр. 3
(из 45 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

3 мин 46,95 с
1,76
4 мин 3,85 с
1,64
100 м (брасс)
1 мин 1,65 с
1,62
1 мин 7,91 с
1,47
200 м (брасс)
2 мин 13,34 с
1,50
2 мин 26,71 с
1,36
100 м (баттерфляй)
52,84 с
1,89
57,93 с
1,73
200 м (баттерфляй)
1 мин 56,24 с
1,72
2 мин 5,96 с
1,59

В общем случае средние скорости на различных участках пути могут отличаться. На рис. 3.9 представлены координаты падающего тела, моменты времени, в которые тело проходит через эти точки, а также средние скорости для выделенных интервалов.

Рис. 3.9. Зависимость средней скорости от участка пути

Из данных, приведенных на рис. 3.9 видно, что средняя скорость на всем пути (от 0 м до 5 м) равна


Средняя скорость на интервале от 2 м до 3 м равна


Движение, при котором средняя скорость изменяется, называется неравномерным.
Мы вычисляли среднюю скорость в окрестности одной и той же точки х = 2,5 м. На рис. 3.9 видно, что по мере уменьшения интервала, по которому проводятся вычисления, средняя скорость стремится к некоторому пределу (в нашем случае это 7 м/с). Этот предел называется мгновенной скоростью или скоростью в данной точке траектории.
Мгновенной скоростью движения, или скоростью в данной точке траектории называется предел, к которому стремится отношение перемещения тела в окрестности этой точки ко времени при неограниченном уменьшении интервала:

Размерность скорости в СИ — м/с.
Часто скорость указывают в других единицах (например, в км/ч). При необходимости такие значения можно перевести в СИ. Например, 54 км/ч = 54000 м/3600 с =15 м/с.
Для одномерного случая мгновенная скорость равна производной от координаты тела по времени:

При равномерном движении величины средней и мгновенной скорости совпадают и остаются неизменными.
Мгновенная скорость — величина векторная. Направление вектора мгновенной скорости показано на рис. 3.10.

Рис. 3.10. Направление вектора мгновенной скорости

Во время забега мгновенная скорость бегуна меняется. Особенно существенны такие изменения в спринте. На рис. 3.11 приводится пример такого изменения для дистанции 200 м.
Бегун начинает движение из состояния покоя и разгоняется, пока не достигнет максимальной скорости. Для бегуна-мужчины время ускорения приблизительно 2 с, а максимальная скорость приближается к 10,5 м/с. Средняя скорость на всей дистанции меньше этого значения.




Рис. 3.11. Зависимость мгновенной скорости от времени бега для дистанции 200 м, мужчины

Причина того, что бегун не может долго поддерживать свою максимальную скорость движения, состоит в том, что он начинает испытывать недостаток кислорода. Тело содержит кислород, запасенный в мышцах, а в дальнейшем получает его при дыхании. Поэтому спринтер может поддерживать свою максимальную скорость только до тех пор, пока не израсходует запас кислорода. Это кислородное истощение наступает на дистанции около 300 м. Следовательно, для больших дистанций бегун должен ограничивать себя скоростью меньше максимальной. Чем длиннее дистанция, тем меньше должна быть скорость, чтобы кислорода хватило на весь забег. Только спринтеры бегут на максимальной скорости всю дистанцию.
На соревнованиях бегун обычно стремиться либо победить соперника, либо установить рекорд. От этого зависит стратегия забега. При установлении рекорда оптимальной стратегией будет та, при которой выбирается скорость, соответствующая полному истощению запаса кислорода к моменту пересечения финиша.
В спорте используются специальные временные характеристики.
Момент времени (t) — это временная мера положения точки, тела или системы. Момент времени определяют промежутком времени до него от начала отсчета.
Моментами времени обозначают, например, начало и окончание движения или какой-либо его части (фазы). По моментам времени определяют длительность движения.
Длительность движения (Дt) — это его временная мера, которая измеряется разностью моментов времени окончания и начала движения:
Дt = tкон — tнач .
Длительность движения представляет собой количество времени, прошедшее между двумя ограничивающими его моментами времени. Сами моменты длительности не имеют. Зная путь точки и длительность ее движения, можно определять ее среднюю скорость.
Темп движения (N) — это временная мера повторности движений. Он измеряется количеством движений, повторяющихся в единицу времени (частота движений):

В повторных движениях одинаковой длительности темп характеризует их протекание во времени. Темп — величина, обратная длительности движений. Чем больше длительность каждого движения, тем меньше темп, и наоборот.
Ритм движений — это временная мера соотношения частей движений. Он определяется по соотношению промежутков времени — длительностей частей движений: Дt2-1 : Дt2-3: Дt4-3...
Различный ритм движений для лыжников при скользящем шаге (для пяти фаз шага) показан на рис. 3.12.

Рис. 3.12. Различный ритм в скользящем шаге на лыжах: а) у высококвалифицированных лыжников;
б) у сильнейших лыжников мира;
фазы /—/// — скольжение, фазы скольжения,
фазы IV— V— стояние лыжи
Быстрота — это темп, в котором преодолевается расстояние без учета направления.
Быстрота — скалярная величина. Пусть между двумя пунктами при движении по одному шоссе одновременно движутся автомобилист, мотоциклист, велосипедист, бегун. У всех четверых одинаковы траектории, пути, перемещения. Однако их движение отличается быстротой (стремительностью), для характеристики которой и вводится понятие «скорость».
3.3. Равномерное прямолинейное движение и его графическое представление

Рассмотрим простейший вид движения — равномерное прямолинейное.
Равномерным называют движение, при котором за любые равные промежутки времени тело проходит одинаковые пути. В этом случае величина скорости остается неизменной (по направлению скорость может изменяться, если движение криволинейное).
Прямолинейным называется движение, при котором траектория является прямой линией. В этом случае направление скорости остается неизменным (величина скорости может изменяться, если движение не равномерное).
Равномерным прямолинейным называется движение, которое является и равномерным, и прямолинейным. В этом случае остаются неизменными и величина, и направление скорости.
Для описания прямолинейного движения ось X обычно направляют по линии движения, а положение тела указывают с помощью его координаты. В этом случае величина перемещения равна разности координат. Запишем определение скорости при равномерном прямолинейном движении:

• x0 — координата при t = 0;
• х — координата в текущий момент времени t',
• t — время движения.



v = const. График — прямая, х = x0 + v?t — линейная функция.
параллельная оси f, График — наклонная прямая,
проходящая тем выше, проходящая тем круче,
чем больше скорость чем больше скорость
Рис. 3.13. Графики зависимости скорости и координаты от времени для равномерного движения
Отсюда получим зависимость координаты от времени движения:
x = x0+v?t. (3.4)
Графики зависимостей v(t) и x(t) показаны на рис. 3.13.
3.4. Ускорение. Равноускоренное прямолинейное движение, графики
В общем случае при движении тела изменяются и величина, и направление вектора скорости. Для того, чтобы охарактеризовать насколько быстро происходят эти изменения, используют специальную величину —ускорение.
Мгновенным ускорением тела или его ускорением в данной точке траектории называется векторная величина, равная пределу, к которому стремится отношение изменения вектора скорости ко времени этого изменения, при неограниченном уменьшении интервала времени.

Размерность ускорения в СИ — м/с2.
При прямолинейном движении вектор скорости во всех точках направлен вдоль прямой, по которой движется тело. Вдоль этой же прямой направлен и вектор ускорения.
Прямолинейное движение называется равнопеременным, если за любые равные промежутки времени скорость тела изменяется на одну и ту же величину.
В этом случае отношение одинаково для любых интервалов времени. Поэтому величина и направление ускорения остаются неизменными: а = const.
Для прямолинейного движения вектор ускорения направлен по линии движения. Если направление ускорения совпадает с направлением вектора скорости, то величина скорости будет возрастать. В этом случае движение называют равноускоренным. Если направление ускорения противоположно направлению вектора скорости, то величина скорости будет уменьшаться. В этом случае движение называют равнозамедленным.
Запишем уравнения, описывающие изменение скорости и координаты тела при равнопеременном движении. Будем отсчитывать время от момента начала наблюдений за движением тела. В этом случае t0 = 0. Если конечный момент времени обозначить t, то Дt = t — 0 = t и по определению ускорения можно записать:

где v0 — скорость движения при t = 0; v — скорость в текущий момент времени t.
Отсюда получим зависимость скорости от времени движения:
v = v0+a?t. (3.5)
Можно показать, что при равнопеременном движении координата тела изменяется по квадратичному закону:


Часто при описании перехода тела из одной точки в другую (расстояние между ними s) удобно пользоваться уравнением, связывающим начальную и конечную скорость перехода:
v2-v20=2as. (3.7)
За исключением времени, все величины, входящие в уравнения (3.5—3.7), являются алгебраическими. Это означает, что численные значения скоростей (v , v), ускорения (а) и перемещения (s)

a = const. График — прямая, V = V0 + a-t — х = x0 + v0?t+ a?t2/2 —
параллельная оси f, линейная квадратичная функция
проходящая тем функция. График — График — участок
выше, чем больше наклонная прямая, параболы (t>0)
ускорение проходящая тем
круче,
чем больше ускорение.


Рис. 3.14. Графики зависимости кинематических величин от времени для равноускоренного движения


подставляются в уравнения со знаком «+», если соответствующий вектор направлен в сторону оси X, и со знаком «—» в противном случае. Обычно, при описании прямолинейного движения координатную ось X направляют в сторону движения. При таком выборе оси ускорение положительно для равноускоренного движения и отрицательно для равнозамедленного движения. На рис. 3.14 представлены графики зависимостей ускорения, скорости и координаты тела от времени равноускоренного движения.

Примеры равноускоренного движения

а) Гоночный автомобиль стартует с места и при постоянном ускорении развивает скорость 385 км/ч (107 м/с) на пути 0,4 км (400 м).
Применим формулу (3.7), из которой найдем ускорение при разгоне:



Это ускорение близко к максимально достижимому сухопутными колесными средствами и зависит от трения между колесами и дорогой. Попытки превысить эту максимальную величину путем использования более мощного двигателя приведут к проскальзыванию шин.
Время, затраченное на разгон, найдем из уравнения (3.5):


б) Найдем тормозной путь автомобиля, знать который важно не только для безопасности движения, но и в целях рациональной организации движения. Пусть, например, при скорости движения v0 = 100 км/ч (28 м/с) водитель принимает решение об экстренном торможении. Считается, что время реакции, затраченное на реализацию решения включить тормоз, составляет 0,3—1,0с. Положим его равным 0,50 с. В это время автомобиль будет двигаться равномерно и пройдет путь s1 = vo?t= 14м. На сухой ровной дороге ускорение торможения составляет 5—8 м/с2. Положим его равным 6,0 м/с2. Подставим это значение в формулу (3.7) со знаком «—» (так как движение замедленное) и найдем путь s2, пройденный от начала торможения до остановки:

Полной путь равен s = s1 + s2 = 79 м.
На мокрой дороге или при гололеде величина а может составлять лишь треть величины а на сухой дороге и тормозной путь значительно увеличится.
в) Игрок в бейсбол (рис. 3.15) бросает мяч со скоростью v = 30 м/с (начальная скорость v =0). При броске мяч ускоряется на общем расстоянии (для взрослого мужчины) s 3,5 м, когда игрок проводит мяч из-за спины до точки, в которой мяч освобождается. Воспользовавшись соотношением (3.7) найдем ускорение, сообщаемое мячу:






Рис. 3.15. Игрок в бейсбол ускоряет мяч на отрезке 3,5 м


Это почти в 13 раз больше ускорения свободного падения.
3.5. Свободное падение и его ускорение

В природе существует естественное равноускоренное движение — это свободное падение.
Свободным падением называется падение тела, если на него действует единственная сила — сила тяжести.
Опыты, проведенные Галилеем, показали, что при свободном падении все тела движутся с одинаковым ускорением, которое
называют ускорением свободного падения и обозначают буквой g. Вблизи поверхности Земли g 9,8 м/с2. Ускорение свободного падения обусловлено притяжением со стороны Земли и направлено вертикально вниз. Строго говоря, такое движение возможно лишь в вакууме. Падение в воздухе можно считать приблизительно свободным, если сила сопротивления движению со стороны воздуха мала по сравнению с силой тяжести.
На рис. 3.16 приведены стробоскопические фотографии стального шарика, падающего вертикально вниз без начальной скорости, и шарика, которому сообщена горизонтальная скорость.

Рис. 3.16. Стробоскопическая фотография свободного падения

Траектория движения свободно падающего тела зависит от направления вектора начальной скорости. Если тело брошено вертикально вниз, то траектория — вертикальный отрезок, а движение является равнопеременным. Если тело брошено вертикально вверх, то траектория состоит из двух вертикальных отрезков. Сначала тело поднимается, двигаясь равнозамедленно. В точке наивысшего подъема скорость становится равной нулю, после чего тело опускается, двигаясь равноускоренно. Если вектор начальной скорости направлен под углом к горизонту, то движение тела происходит по параболе. Так при отсутствии сопротивления воздуха двигаются брошенный бейсбольный мяч, диск, молот, спортсмен прыгающий в длину (в высоту), летящая пуля и др.
Предположим, что тело брошенное под углом к горизонту 9о имеет начальную скорость vo, рис. 3.17.
Движение происходит в вертикальной плоскости, проходящей через вектор начальной скорости. Поместим начало координат в начальную точку, а координатные оси направим горизонтально (X) и вертикально вверх (Y). Ускорение в любой точке полета равно ускорению свободного падения g.


Рис. 3.17. Движение тела, брошенного под углом к горизонту

Проекция вектора g на ось X равна нулю. Поэтому движение вдоль этой оси является равномерным со скоростью vx = v0?cos(и0). Проекция вектора g на ось Y равна —g. Поэтому движение вдоль этой оси является равнопеременным с ускорением —g и начальной скоростью v0y = v0 • sin (и0). Таким образом, тело, брошенное под углом к горизонту участвует одновременно в двух независимых движениях: равномерном движении по горизонтали и в равнопеременном — по вертикали. Дальность полета максимальна при и0 = 45°. Характеристики движения по двум осям представлены в табл. 3.2.
Следует иметь в виду, что скорости в симметричных точках параболы по модулю одинаковы, но направление вертикальных проекций противоположное.
Тело в баллистическом движении может пересечь ось X, если исходная точка броска находилась выше, чем точка приземления.
Рассмотрим некоторые примеры теоретических расчетов.

Полет футбольного мяча

По футбольному мячу ударяют так, что он взлетает под углом и0 = 37° со скоростью 20 м/с. Используя формулы приведенные
в табл. 3.2 найдем дальность полета

Таблица 3.2
Характеристики движения тела, брошенного под углом к горизонту, по двум осям (ось Y направлена вверх)
Характеристики
Ось Х
Ось Y
Начальная скорость
v0x = v0?cos(и0)
v0y = v0 • sin (и0).
Ускорение
0
— g
Время полета




Дальность полета для случая, когда точки броска и приземления находятся на одной высоте





Максимальная высота


Скорость в момент t
vx = v0x
vy = v0y—gt
Координаты в момент t
х = vx .t
y = v0y • t -
Максимальная высота подъема
Полет пули
Из автомата производят выстрел в горизонтальном направлении (q0 = 0). Начальная скорость пули v0 = 715м/с. Расстояние до мишени х = 100 м. В нашем случае vx – v0x = v0 = 715 м/с; v0y = 0.
Из уравнения х = vx•t найдем t = = 0,14с Координата точки мишени, в которую попадет пуля, находится из уравнения y= v0y •t = -0,1 м. Таким образом пуля опустится на 10 см. Чтобы скомпенсировать такое опускание, выстрел производят под небольшим углом вверх, для чего соответствующим образом устанавливают прицел.

Прыжок в длину с разбега (рис. 3.18)

Оценим теоретическую максимальную дальность прыжка в длину, определяемую физическими возможностями человека. Горизонтальную скорость v0x спортсмен набирает при разбеге.
Примем ее равной максимальной скорости спринтера: v0x = 10,5 м/с. Вертикальную скорость v0 спортсмен приобретает при отталкивании. Оценим ее исходя из того, что высота, на которую человек может поднять свой центр масс, прыгая вертикально вверх с места, приблизительно равна 0,6 м. Из формулы




Рис. 3.18. К описанию прыжка в длину с разбега

Найдем v0y = = 3,43 м/с. Прыгун отталкивается в вертикальном положении, а приземляется в «сидячем» положении. При этом центр масс опускается приблизительно на 0,6 м (при отталкивании центр масс находится на высоте ˜1 м, а при приземлении на высоте ˜0,4 м). Значит координата точки приземления у -0,6 м.
Эта координата определяется формулой Подставив численные значения, получим квадратное уравнение: 4,9-t2 — 3,43•t — 0,6 = 0. Решив его, найдем время полета t = 0,845 с. Дальность прыжка найдем из формулы s = vx •t = 8,87 м.
3.6. Движение по окружности, центростремительное и тангенциальное ускорения. Угловое ускорение

В природе движение тела чаще происходит по кривым линиям. Почти любое криволинейное движение можно представить как последовательность движений по дугам окружностей. В общем случае, при движении по окружности скорость тела изменяется как по величине, так и по направлению.

Равномерное движение по окружности

Движение по окружности называется равномерным, если величина скорости остается неизменной.
Основными характеристиками такого движения являются:
• радиус окружности R;
• скорость движения (линейная скорость) V;
• угловая скорость движения ;
• угол поворота радиуса (угловое перемещение)
Угловой скоростью тела, движущегося по окружности равномерно, называется отношение угла поворота его радиус-вектора ко времени, за которое совершен поворот:
В физике применяется радианная мера угла (безразмерная), которая определяется, как отношение длины дуги (l) к радиусу
окружности:, поэтому размерность угловой скорости —
, рис. 3.19, а. Радиан — такой угол, длина дуги которого равна радиусу окружности. Полный поворот по окружности содержит 2р радиан.

Рис. 3.19. Радианная мера угла (а). Центростремительное ускорение (б)

Между линейной и угловой скоростями существует простая связь:

Можно показать (рис. 3.19.6), что при равномерном движении по окружности вектор ускорения направлен к центру. Такое ускорение называется центростремительным.
Величина центростремительного ускорения определяется формулами





Кроме основных характеристик вращательного движения, используются следующие вспомогательные величины:
• частота вращения (v), равная числу оборотов за единицу
времени:(N — число оборотов). Размерность — 1 /с.
• период обращения (Т), равный времени, за которое тело совершает один оборот:. Размерность — с.
Эти величины связаны с угловой скоростью соотношениями:


Неравномерное движение по окружности

<< Предыдущая

стр. 3
(из 45 стр.)

ОГЛАВЛЕНИЕ

Следующая >>