<< Предыдущая

стр. 32
(из 45 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

Сопротивление воздухоносных путей равно отношению разности давлений между альвеолами и ротовой полостью к расходу воздуха (см. рис. 17.20). Его можно измерить методом общей плетизмографии (рис. 17.21). Перед тем, как обследуемый делает вдох (А), давление в плетизмографической камере равно атмосферному. Во время вдоха давление в альвеолах снижается, а объем альвеолярного воздуха увеличивается на величину ДV. При этом воздух в камере снижается и по изменению его давления можно рассчитать ДV (см. рис. 17.22).


Рис. 17.21. Измерение сопротивления воздухоносных путей с помощью общей плетизмографии. Во время вдоха альвеолярный воздух расширяется, и давление в камере увеличивается. По этому увеличению можно рассчитать внутриальвеолярное давление. Разделив разницу между давлением в альвеолах и полости рта на расход воздуха, можно получить сопротивление воздухоносных путей (по J. Comrol, 1965)


Р1 V1= Р2(V1- ДV),
где Р1 и Р2 — давление в камере соответственно до попытки вдохнуть и во время нее, V1— объем камеры до этой попытки, а ДV — изменение объема камеры (или легких). Отсюда можно рассчитать ДV. Если объем легких известен, можно перейти от ДV к внутриальвеолярному давлению, используя закон Бойля-Мариотта (Р3V2 = P4(V2 + ДV ), где Р3 и Р4 — давление в полости рта соответственно до попытки вдохнуть и во время нее, a V2 — ФОЕ, которая и рассчитывается по этой формуле).
Одновременно измеряется расход воздуха, что дает возможность рассчитывать сопротивление воздухоносных путей. Такие же измерения проводятся при выдохе. Способ определения объема легких приведен на рис. 17.22.
Сопротивление воздухоносных путей можно рассчитать и при спокойном дыхании, измерив внутриплевральное давление с помощью введенного в пищевод катетера (см. рис. 17.19). Однако при этом результаты будут включать также сопротивление тканей. Внутриплевральное давление определяется с одной стороны силами, противодействующими эластической тяге легких, а с другой — силами, преодолевающими сопротивление воздухоносных путей и тканей.


Рис. 17.22. Измерение ФОЕ с помощью общей плетизмографии. Когда обследуемый пытается сделать вдох при перекрытых воздухоносных путях, объем его легких несколько увеличивается, давление в дыхательных путях снижается, а давление в камере повышается. Отсюда, используя закон Бойля—Мариотта, можно рассчитать объем легких

При движении легких и грудной клетки необходимо прикладывать некоторое давление для преодоления вязких сил, действующих в тканях при их деформации. Именно наличием таких сил частично объясняется заштрихованная область кривой на рис. 17.19. Однако у молодых здоровых людей сопротивление тканей составляет лишь около 20% общего (т. е. суммы сопротивления тканей и воздухоносных путей), хотя при некоторых заболеваниях оно может увеличиваться.
Для того, чтобы при дыхании происходили движения легких и грудной клетки, необходимо затрачивать работу. В данном случае ее удобнее всего измерять произведением давления на объем.
Работу, затрачиваемую на движение легких можно оценить по кривой «давление—объем» (рис. 17.23). При вдохе внутриплевральное давление изменяется в соответствии с кривой АБВ и на движение легких затрачивается работа, соответствующая площади ОАБВГО. Трапеция ОАДВГО отражает работу, необходимую для преодоления упругих сил, а заштрихованный участок АБВДА — работу, затраченную на преодоление вязкого сопротивления воздухоносных путей и тканей (см. рис. 17.19). Чем выше сопротивление воздухоносных путей или расход воздуха при вдохе, тем более отрицательным будет внутриплевральное давление, тем больше сместится вправо (в сторону отрицательных величин) точка Б по сравнению с точкой Д и тем больше будет площадь заштрихованного участка.

Рис. 17.23. Кривая «давление—объем» для легких. Работа, необходимая для преодоления упругих сил при вдохе соответствует трапеции ОАДВГО, а работа по преодолению вязких сил — заштрихованному участку АБВДА

Работе, необходимой для преодоления сопротивления воздухоносных путей (и тканей) при выдохе, соответствует участок АДВЕА. В нормальных условиях он «вписан» в трапецию ОАДВГО, т. е. работа по преодолению вязких сил может быть совершена за счет энергии, запасенной в упругих структурах и высвобождающейся при пассивном выдохе. Разница между площадями АДВЕА и ОАДВГО соответствует энергии, рассеивающейся в виде тепла.
Чем выше частота дыхания и расход воздуха, тем больше площадь участка АБВДА (т. е. работа по преодолению вязких сил). С другой стороны, чем больше дыхательный объем (ДО), тем больше площадь трапеции ОАДВГО (т. е. работа по преодолению упругих сил).
Больные со сниженной растяжимостью легких (пневмосклероз, эмфизема и др.) как правило, дышат чаще и дыхание поверхностное; а при обструкции дыхательных путей — дыхание медленное. В обоих случаях это способствует уменьшению затрачиваемой работы.
При выполнении тяжелой физической работы, при занятиях спортом, особенно циклическими видами спорта (академическая гребля, плавание, лыжные гонки, стайерский бег и др.) происходит увеличение затрачиваемой работы, и затраты увеличиваются, если спортсмен тренируется в неблагоприятных климатических условиях (среднегорье, зоны с жарким и влажным климатом и т. п.).
Общую работу, затрачиваемую на движение легких и грудной клетки, измерить трудно, хотя некоторые ее оценки были получены при искусственной вентиляции в респираторе типа «искусственные легкие». Такую работу можно рассчитать так же, измеряя затраты кислорода на дыхание и учитывая коэффициент полезного действия (КПД):


Полагают, что этот коэффициент составляет около 5—10%.
Затраты кислорода на спокойное дыхание исключительно малы — менее 5% от общего потребления О2. При произвольной гипервентиляции они могут увеличиваться до 30%. У спортсменов во время физической работы (тренировки или соревнования) поглощение кислорода дыхательными мышцами увеличивается и тем самым дыхательная мускулатура является лимитирующим фактором в выполнении физической работы (нагрузки).
Работа, необходимая для преодоления эластического сопротивления легких и грудной стенки, как полагают, не зависит от времени. Максимум работы производится тогда, когда дыхательный объем также максимален. Эту форму сопротивления можно вычислить, определив давление, необходимое для измерения объема легких и грудной клетки. Эта величина называется растяжимостью (С).

где ДV — изменение объема, а ДР — изменение давления.
Общую растяжимость легкого и грудной стенки можно определить, составив график, выражающий внутрилегочное давление, необходимое для поддержания в легком известного объема газа. Экспериментально это производится путем наполнения легких неким объемом, расслабления всех дыхательных мышц и измерения давления во рту (при закрытых ноздрях). Растяжимость легкого равна величине внутриплеврального давления и может быть определена таким же образом (рис. 17.24).

Рис. 17.24. Общее давление (Р0), создаваемое суммой эластических свойств грудной клетки (Ргр) и легких (Рл) на разных уровнях расширения груди (%ЖЕ). Наклон кривых соответствует растяжимости. Обратите внимание на то, что конечный дыхательный объем в покое (Vn) приходится на точку, где отрицательное (Ргр) равно положительному (Рл). При изменении эластических свойств легкого или грудной клетки (Vn) должно сместиться. Любой другой объем кроме Vn, требует напряжения мышц для создания нужной силы (Р0)

Установлено, что от 3/4 до 7/8 общего эластического сопротивления создается поверхностным натяжением пленки жидкости, выстилающий внутреннюю поверхность альвеолы, а остальная часть — эластическими свойствами ткани. Чем выше поверхностное натяжение, тем больше нужно энергии для преодоления его сопротивления. Поверхностное натяжение снижается за счет сурфактанта. Как полагают, сурфактант стабилизирует легочные альвеолы, так что они не спадаются при выдохе.
Показано, что сопротивление воздушному потоку создается главным образом в бронхах среднего размера (рис. 17.25). На основании уравнения Пуазейля следовало бы ожидать, что местом наибольшего сопротивления будут самые мелкие бронхиолы, но на самом деле это не так. Воздушные пути с диаметром меньше 2 мм создают менее 20% измеренного сопротивления воздушному потоку. Обилие мелких воздушных путей создает большое суммарное поперечное сечение для воздушного потока. Для очень малого объема легких описано явление «закрытого воздухоносного пути», т. е. обратимого спадения мелких бронхиол. В таких условиях некоторое количество энергии затрачивается при вдохе на открывание спавшихся бронхиол. Сопротивление воздушному потоку зависит от времени; оно наибольшее при частом дыхании и достигает максимума, даже если объем вдоха не максимален.


Рис. 17.25. Сопротивление в разных частях воздухоносных путей.
Обратите внимание на то, что сопротивление выше всего в крупных бронхах, а самое низкое — в мелких бронхиолах

Работа по перемещению грудной клетки и легкого против сопротивления неэластичных тканей тоже зависит от времени. У взрослых мужчин она составляет около 20% общего расхода энергии при дыхании.
Общую работу, затрачиваемую на перемещение воздуха в легкое и из него, включая движение грудной клетки, можно вычислить по графику «давление—объем» (рис. 17.26):



Рис. 17.26. Схема зависимости между давлением и объемом при одном дыхательном объеме (сплошная линия, направленная в сторону возрастающих значений, обозначает вдох; сплошная линия, направленная в сторону снижения объема, обозначает выдох). Суммированные площади А и Б соответствуют общей работе эластических компонентов, совершаемой при вдохе. Площадь Б соответствует всей работе неэластических компонентов, производимой при вдохе, то есть работе ткани и воздушной струи. Площадь Б соответствует работе, совершаемой неэластическими компонентами при выдохе

Эта работа складывается из работы против эластических сил (см. рис. 17.26) и против неэластических (см. рис. 17.26). Для данного минутного объема существует интенсивность работы, при которой сумма эластического и зависимого от времени неэластического компонентов минимальна (рис. 17.27). При нормальном дыхании для перемещения воздуха в легкие и из них требуется менее 5% общего потребления кислорода (рис. 17.28).

Рис. 17.27. Гипотетическая кривая работы эластических и неэластических компонентов и суммарной работы, производимой при равной частоте дыхания у человека при постоянном минутном объеме. Обратите внимание на оптимальную частоту, когда общая сумма работы эластических (I) и неэластических (II) компонентов дает минимум общей необходимой работы. Работа выражена в количестве потребляемого О2 (V02)


Рис. 17.28. Потребление кислорода дыхательными мышцами при разной
частоте дыхания в норме и при пониженной растяжимости легких
(эмфизема)

Чем интенсивнее физическая работа, тем выше потребление кислорода дыхательной мускулатурой.
J.M. Petit и др. (1962) установили зависимость между КПД и частотой дыхания у человека. Авторы регистрировали ЭМГ диафрагмы и прямой мышцы живота и сделали вывод, что при медленном и глубоком дыхании возникает дискоординация мышц-антагонистов, а при учащенном дыхании их функционирование было более согласованным. Именно этим фактором они объясняют увеличение КПД по мере учащения дыхания.
А.В. Otis (1950) предложил определить механическую мощность дыхания при помощи следующего уравнения:
W = K1V2+K2V3,
где W — механическая мощность внешнего дыхания (Вт); V — минутный объем дыхания; К1 и К2 — константы.
Первая часть уравнения характеризует мощность, необходимую для преодоления эластического сопротивления легких и грудной клетки плюс ламинарного сопротивления воздушного потока в дыхательных путях; вторая часть — мощность, необходимую для преодоления турбулентного сопротивления потока воздуха в дыхательных путях. У человека в покое и при легкой физической работе с величинами МОД, не превышающими 30 л, механическая мощность внешнего дыхания составляет 0,04—0,31 Вт, однако при величине МОД 120—125 л эта мощность достигает 6,97—8,37 Вт.
При увеличении МОД на 25 л по отношению к состоянию покоя (8—12л) кислородная стоимость дыхания увеличивается и на каждый литр вентиляции затрачивается дополнительно 1 мл кислорода (О2), а при возрастании МОД на 50—80 л — соответственно 2,0— 3,2 мл О2. Если величина МОД превышает 100 мл, на работу дыхательной мускулатуры затрачивается более 1 л О2. Если МОД превышает 150 л, то кислородная стоимость дыхания составляет около 4,5 л. R.J. Shepard (1966) считает, что уровень МОД в 120 л — это критическая граница, выше которой энергетическая стоимость работы аппарата внешнего дыхания становится особенно высокой.
Изменения объема легких

Объем легкого меняется при вдохе не всюду одинаково. Для этого имеются три главные причины. Во-первых, грудная полость во всех направлениях увеличивается неравномерно. Во-вторых, не все части легкого одинаково растяжимы. В-третьих, предполагается существование гравитационного эффекта, который способствует смещению легкого книзу (рис. 17.29).

Рис. 17.29. Объем части легкого, способный к расширению, то есть жизненная емкость части (ЖЕч). Верхушка легкого показана в левой части графика ФОЕ — функциональная остаточная емкость

Объем воздуха, вдыхаемый при обычном (неусиленном) вдохе и выдыхаемый при обычном (неусиленном) выдохе, называется дыхательным воздухом. Объем максимального выдоха после предшествовавшего максимального вдоха называется жизненной емкостью легких (ЖЕЛ). Она не равна всему объему воздуха в легком (общему объему легкого), поскольку легкие полностью не спадаются. Объем воздуха, который остается в неспавшихся легких, называется остаточным воздухом. Имеется дополнительный объем, который можно вдохнуть при максимальном усилии после нормального вдоха. А тот воздух, который выдыхается максимальным усилием после нормального выдоха, это резервный объем выдоха. Функциональная остаточная емкость состоит из резервного объема выдоха и остаточного объема. Это тот находящийся в легких воздух, в котором разбавляется нормальный дыхательный воздух. Вследствие этого состав газа в легких после одного дыхательного движения обычно резко не меняется.
Минутный объем (V) — это воздух, вдыхаемый за одну минуту. Его можно вычислить, умножив средний дыхательный объем (V1) на число дыханий в минуту (f), или V = fVt. Часть Vt, например, воздух в трахее и бронхах до конечных бронхиол и в неперфузируемых альвеолах, не участвует в газообмене, так как не приходит в соприкосновение с активным легочным кровотоком — это так называемое мертвое пространство (Vd). Часть Vt которая участвует в газообмене с легочной кровью, называется альвеолярным объемом (Va). С физиологической точки зрения альвеолярная вентиляция (Уо) — наиболее существенная часть наружного дыхания Va = f(Vt — Vd), так как она является тем объемом вдыхаемого за минуту воздуха, который обменивается газами с кровью легочных капилляров.

Вентиляция легких

Вентиляция легких зависит от дыхательного объема (ДО) и частоты дыхания. Объем воздуха, который могут вместить легкие при максимально глубоком вдохе, называется общей емкостью легких (ОЕЛ). Тот объем, который человек может выдохнуть после максимального вдоха, составляет жизненную емкость легких (ЖЕЛ). Нормальная глубина дыхания, свойственная отдельному человеку в состоянии покоя, называется дыхательным объемом (ДО) и составляет около 10% ОЕЛ или 15—18% ЖЕЛ. Произведение дыхательного объема на число дыханий составляет минутный объем дыхания (МОД). Эта величина зависит прежде всего от уровня метаболизма, массы тела (веса), возраста, и в условиях покоя у взрослого человека может колебаться в широких пределах от 3 до 10 л.
На рис. 17.30 схематично представлены легочные объемы человека. Вверху большая диаграмма показывает четыре первичных легочных объема и их примерную величину. Внешний круг указывает наибольший объем, до которого могут быть растянуты легкие; внутренний круг (остаточный объем) ограничивает объем, оставшийся после того, как весь воздух изгнан из легких (при самостоятельном дыхании). Вокруг центральной диаграммы расположены более мелкие; затушеванные области на них означают четыре емкости легких. Объем газа мертвого пространства включен в остаточный объем, функциональную остаточную емкость и общую емкость легких, как это имеет место при измерении обычными методами. Внизу представлены легочные объемы так, как они получаются на спирограмме; затушеванные участки соответствуют центральной диаграмме в верхней части рисунка.
Из общего количества воздуха, вдыхаемого в нормальных условиях человеком, около 150 мл не попадает в альвеолы и распределяется в верхних дыхательных путях — глотке, гортани, трахее и бронхах — в так называемом мертвом пространстве (МП) и, следовательно, не участвует в газообмене.
Различают анатомическое и физиологическое мертвое пространство. Объем анатомического мертвого пространства можно вычислить по формуле:

ОМП (мл) = масса тела (кг) х 2,22.

В обычных условиях величина анатомического МП довольно постоянна.


Рис. 17.30. Легочные объемы

В процессе дыхания не весь вдыхаемый воздух достигает альвеол и участвует в газообмене; поэтому возникает необходимость введения еще одного понятия — минутной альвеолярной вентиляции (МАВ). У взрослого человека МАВ составляет в среднем 2,5— 5 л/мин. Зависимость между минутным объемом дыхания (МОД) и минутной альвеолярной вентиляцией может быть выражена формулами:

МАВ = МОД — ОМП • ЧД или МАВ = (ДО — ОМП) • ЧД

Поскольку МАВ определяет газообмен, уменьшение доли ее в МОД будет приводить к ухудшению газообмена и наоборот. При одном и том же МОД увеличение частоты дыхания (ЧД) приводит к снижению МАВ и, следовательно, к ухудшению газообмена. На рис. 17.31 показано, что один и тот же МОД (8000 мл) может быть получен при разной частоте дыхания (и, конечно, при разном ДО). Но если при нормальной ЧД и нормальном ДО доля альвеолярной вентиляции в МОД достаточно высока и составляет 5600 мл (см. рис. 17.31, б), то при тахипноэ МАВ снижается до 3200 мл, а доля объема, не участвующего в газообмене, увеличивается (см. 17.31, а). Это влечет за собой ухудшение газообмена и увеличение цены дыхания.
Важным элементом адекватной спонтанной вентиляции легких здорового и больного организмов является синхронная деятельность межреберных дыхательных мышц и диафрагмы в активной фазе дыхательного цикла, т. е. в период вдоха, обеспечивающая максимальное увеличение емкости грудной полости в этот период. В ряде случаев наблюдается расстройство такой синхронизации в результате действия различных факторов. Такая синхронизированная деятельность дыхательных мышц и диафрагмы называется «наружным парадоксальным дыханием». Во всех случаях при парадоксальном дыхании возникают существенные нарушения газообмена, приводящие к гипоксии и гиперкапнии. На рис. 17.32 представлены возможные варианты такого нарушения вентиляции легких.


Рис. 17.31. Влияние изменений дыхательного объема и частоты дыхания на альвеолярную вентиляцию

Рис. 17.32. Схема, иллюстрирующая «наружное парадоксальное дыхание»:а, б — взаимоотношение реберного каркаса грудной клетки и диафрагмы в момент нормального выдоха и вдоха; в — реберное дыхание;
г — диафрагмальное дыхание

Вентиляционно-перфузионные отношения.
Легочный кровоток

Эффективность газообмена в легких зависит от того, как распределяется объем вдыхаемого воздуха в альвеолах и кровоток в легочных сосудах. В идеальном случае на каждый метр протекающей по легочным сосудам крови в минуту должно приходиться 0,8 л альвеолярного воздуха, т. е. так называемый вентиляционно-перфузионный коэффициент равен 0,8 (рис. 17.33).
Если проанализировать газообмен здорового человека, то почти во всех случаях будет обнаружена большая или меньшая неравномерность распределения воздуха в легких. У здорового человека в состоянии покоя в дыхании участвуют не все альвеолы, а в кровообращении — не все легочные капилляры. Однако равномерность распределения воздуха в легких возрастает с увеличением МОД, например, при физической нагрузке.


Рис. 17.33. Вентиляционно-перфузионные отношения в легких:
а — нормальная вентиляция и нормальная перфузия;
б — нормальная вентиляция альвеолы и отсутствие перфузии;
в — отсутствие вентиляции и нормальная перфузия
Неравномерное распределение кровотока по легочным сосудам также приводит к нарушению вентиляционно-перфузионных отношений. Даже у здорового человека почти никогда не бывает идеально равномерного распределения кровотока, так же как и вентиляция. При изменениях положения тела возникают изменения распределения кровотока в связи с гравитацией.
Возникновение у неподвижных больных (особенно у больных в послеоперационном периоде при длительном пребывании в одном положении и др.) влажных, так называемых застойных хрипов в нижних задних отделах легких (при отсутствии их в верхних отделах) связано именно с неравномерным распределением кровотока и вентиляции. Тот факт, что насыщение артериальной крови О2 никогда не достигает 100% ив норме составляет 96%, объясняется неравномерностью вентиляции и кровотока, в результате которого в крови легочных вен всегда имеется небольшое количество восстановленного гемоглобина.
Таким образом, в норме вентиляционно-перфузионные отношения каждого легкого в отдельности поддерживаются автономными механизмами в зависимости от ряда внешних и внутренних причин.

Регуляция дыхания

Известно, что главная функция легких состоит в обмене кислорода (О2) и углекислого газа (СO2) между воздухом и кровью, т. е. в поддержании нормальных уровней P О2 и Рсо2 в артериальной крови.
Уровни СО2 (Н+) и О2 в артериальной крови, как правило, регулируются в узких пределах через легочную вентиляцию.
Несмотря на широкую изменчивость поглощения кислорода (О2) в организме и выделения из него углекислоты (СО2), Р0 и Рсо в артериальной крови в норме сохраняются достаточно постоянными. Эта удивительная регуляция осуществляется благодаря тонкому управлению легочной вентиляцией.
В ЦНС имеются специальные области, которые участвуют в создании каждого вентиляционного усилия дыхательных мышц, а также регулируют общую деятельность дыхательной системы. Участие ЦНС складывается из двух функционально раздельных элементов: 1) автоматическое дыхание, связанное, главным образом, со структурами ствола мозга, и 2) произвольное дыхание, связанное со структурами высших уровней мозга, главным образом, с корой больших полушарий.
Выяснено, что высший отдел ЦНС, кора больших полушарий, оказывает влияние на глубину и частоту дыхания. При стимуляции особых областей коры головного мозга дыхание или усиливается, или ослабляется. Эти области находятся под произвольным контролем и проявляют себя, когда мы едим или говорим.
Система регуляции дыхания (рис. 17.34) включает три основных элемента:
1) рецепторы, воспринимающие информацию и передающие ее в
2) центральный регулятор, расположенный в головном мозге.

Здесь информация обрабатывается и отсюда же посылаются команды на:
3) эффекторы (дыхательные мышцы), непосредственно осуществляющие вентиляцию легких.


Рис. 17.34. Основные элементы системы регуляции дыхания. Информация от различных рецепторов поступает в центральный регулятор, а от него посылаются команды дыхательным мышцам. Изменение активности этих мышц приводит к изменению вентиляции, а это в свою очередь снижает возбуждающие воздействия на рецепторы (отрицательная обратная связь)

Кроме того, существует ряд механорецепторов, возбуждение которых влияет на характер дыхания. Среди них — рецепторы давления. При их возбуждении возникают реакции, варьирующие от временного апноэ до значительного учащения дыхания. Движение суставов и растягивание мышц конечностей повышают как частоту дыхания, так и дыхательный объем. Боль тоже действует на дыхание.

Реакция легких на физические нагрузки

Пока внутриплевральное давление остается ниже атмосферного, размеры легких точно следуют за размерами грудной полости. Движения легких совершаются в результате сокращения дыхательных мышц в сочетании с движением частей грудной стенки и диафрагмы.
Вентиляция и легочный кровоток, перенос О2 и СО2 и диффузная способность при физической нагрузке могут возрастать в несколько раз.
При физической нагрузке вентиляция легких резко возрастает и при интенсивной физической работе может становиться очень сильной. У здоровых молодых мужчин максимальное потребление кислорода (МПК) иногда достигает 4 л/мин, а легочная вентиляция — 120 л/мин, т. е. в 15 раз превышает уровень покоя. Усиление вентиляции тесно связано с увеличением потребления О2 и выделения СО2. Интересно, что причины такого усиления при физической нагрузке еще во многом неясны (J.B. West, 1988).
При нагрузке Рсо2 в артериальной крови не увеличивается; напротив, при тяжелой физической работе оно обычно слегка снижается. При умеренной нагрузке рН артериальной крови остается почти постоянным, а при тяжелой физической работе — снижается в связи с выделением молочной кислоты (лактата) в процесс анаэробного гликолиза. Ясно, что ни один из перечисленных факторов не должен вызывать резкого усиления вентиляции при легкой или умеренной физической нагрузке.
Исследования показывают, что если совершать пассивные движения конечностями, то вентиляция легких усиливается. Это, по-видимому, связано с рефлекторной реакцией рецепторов, расположенных в суставах или мышцах.
Предполагается, что увеличение вентиляции легких при физической нагрузке может быть частично обусловлено повышением температуры тела и импульсами, поступающими от двигательной коры головного мозга.
Исследования показывают, что тренировки (и, особенно, соревнования) в среднегорье и зонах жаркого и влажного климата, вызывают сильную реакцию организма спортсмена на внешние факторы.
17.3. Биомеханика пищеварительной системы

Пищеварительный аппарат своим назначением имеет принятие пищи извне, механическую и химическую ее обработку и выведение во внешнюю среду неиспользованных пищевых остатков. Конечным результатом этого процесса является перевод пищевых веществ в растворимое состояние и всасывание их в кровь, посредством которой они доставляются живым тканям.
Пищеварительный аппарат можно рассматривать как своего рода трубку (общей длиной 10—14 м), начинающуюся краниально — ротовой щелью и заканчивающуюся каудально — задним проходом. У человека различают: полость рта, глотку, пищевод, желудок, тонкую и толстую кишку. Последние четыре отдела входят в понятие пищевого канала.
Стенки пищевого канала на всем протяжении состоят из трех оболочек: слизистой, обращенной в просвет канала; серозной, покрывающей органы снаружи; и мышечной.
Мускулатура пищеварительного аппарата служит передвижению принятой пищи в кранио-каудальном направлении, обеспечивает перемешивание ее для возможно большего контакта с пищеварительными соками и регулирует переход пищевых масс из одного отдела в другой.
Основными функциями пищеварительного аппарата являются секреторная, моторная и всасывательная. Секреторная функция заключается в выработке железистыми клетками пищеварительных соков: слюны, желудочного, поджелудочного и кишечного соков и желчи. Моторная, или двигательная, функция осуществляется мускулатурой пищеварительного аппарата и обеспечивает жевание, глотание и передвижение пищи вдоль пищеварительного тракта, а также выбрасывание непереваренных остатков. Всасывание осуществляется слизистой оболочкой желудка, тонких и толстых кишок. Сокращение гладких мышечных волокон стенки желудка обеспечивает моторную, иначе говоря, двигательную функцию желудка. Значение ее состоит в перемешивании содержимого желудка и передвижении пищи из желудка в кишку. Перистальтика осуществляется непрерывно с определенным ритмом и скоростью. Так, перистальтика желудка составляет 3 м (3 волны в минуту), а кишечника — 6 м/с, но изменяется при некоторых заболеваниях.
Перистальтика обеспечивает перемешивание, растирание и продвижение химуса. Она обусловлена последовательно смещающимися сокращениями и расслаблениями гладкомышечной мускулатуры (циркуляторной и продольной).
При физиологическом исследовании кишечника можно выявить две формы бегущих волн деформации: стоячие волны, наблюдаемые в эксперименте на изолированной кишке (или ее сегменте), и волны, распространяющиеся в продольном направлении, которые вызывают изменения внутриполостного давления и объема кишки.
Наряду с секреторной, органы пищеварительного тракта осуществляют также экскретную функцию, состоящую в выделении из организма некоторых продуктов обмена (например, желчных пигментов) и солей тяжелых металлов.
Все функции органов пищеварения подчинены сложным нервным и гуморальным механизмам регуляции.
Схема расположения внутренних органов представлена на рис. 17.35, а, а на рис. 17.35, б представлено моделирование механических связей.
Продвижение и переваривание пищи в желудочно-кишечном тракте происходит в результате перистальтики желудка и кишок. Перистальтические движения наступают в результате сокращения мускулатуры, происходит как бы волнообразное движение. Эвакуаторная функция желудка связана с перистальтическими сокращениями мускулатуры и поступлением пищи в двенадцатиперстную кишку.
При нарушении перистальтики возникает метеоризм, колиты и другие нарушения; замедление эвакуации желудочного содержимого наблюдается при хронических гастритах.
В норме пустой желудок находится в спавшемся состоянии, а при поступлении пищи — начинается перистальтическая функция. Перистальтика желудка обусловлена тонусом желудочной мускулатуры.
О перистальтике желудка, т. е. о состоянии тонуса мускулатуры, можно судить по данным рентгенологического исследования, по электрогастрографии или по радиотелеметрии и др.
Желудочно-кишечный тракт, как полый орган с гладкой мускулатурой, функционирует в результате сокращения кишечной мускулатуры.
Главные функции кишечника — секреторная, двигательная и всасывательная — осуществляются неодинаково в разных отделах.
Секреторная, или пищеварительная, функция в основном осуществляется в верхнем отделе тонкого кишечника. Главную роль в выполнении этой функции играют выделяющиеся здесь ферменты поджелудочной железы, желчь и др.
Некоторую роль в кишечном пищеварении играют ферменты, выделяемые бактериями, населяющими кишечник. Тонкокишечное пищеварение касается всех групп пищевых веществ — жиров, белков, углеводов, нуклеиновых кислот.
Двигательная функция кишечника. В тонких кишках наблюдается два вида движений: перемешивающие, способствующие смешиванию кишечного содержимого с пищеварительными соками, и перистальтические, при которых происходит сокращение как круговой, так и продольной мускулатуры кишок. Сокращения круговой мускулатуры совершаются таким образом, что выше пищевого комка она сокращается, а ниже него расслабляется. Это способствует продвижению пищевой массы вперед. Сокращение продольных мышечных волокон вызывает укорочение соответствующего участка кишки и как бы надвигание его на пищевую массу, благодаря чему последняя опять-таки оказывается в более дистальном, т. е. расположенном ближе к толстой кишке участке.


Рис. 17.35. Внутренние органы человека (а). Моделирование механических связей (б). 1 — гортань, 2 — дыхательное горло, 3 — верхняя доля легкого, 4 — легочный ствол, 5 — сердце, б — диафрагма, 7 — желудок, 8 — селезенка, 9 — поперечная ободочная кишка, 10 — тонкая кишка, 11 — сигмовидная ободочная кишка, 12 — мочевой пузырь, 13 — слепая кишка, 14 — восходящая ободочная кишка, 75—желчный пузырь, 76—печень, 77—верхняя доля правого легкого, 18 — аорта, 79 — верхняя полая вена, 20 — плечеголовная вена, 27 — правая внутренняя яремная вена, 22 — правая общая сонная артерия

В верхней части тонкой кишки продвижение пищевых масс происходит быстро, в нижней — замедляется. Все движения в тонких кишках происходят под влиянием импульсов, возникающих в ауэрбаховском и мейснеровском сплетениях.
Двигательная функция толстой кишки сводится в основном к проталкиванию каловых масс по направлению к заднему проходу. В толстом кишечнике происходит три вида движений: малые и большие маятникообразные движения, при которых происходят перемешивание содержимого и уплотнение его благодаря всасыванию жидких частей, перистальтические движения, способствующие продвижению каловых масс по направлению к прямой кишке. Все движения в толстых кишках происходят медленнее и реже, чем в тонких.
Поступление каловых масс в прямую кишку влечет за собой дефекацию. Дефекация является рефлекторным актом, вызываемым раздражением каловыми массами нервных окончаний в слизистой оболочке прямой кишки. Это раздражение проводится к центру, расположенному в поясничной части спинного мозга. При этом возникают непроизвольные сокращения прямой кишки при одновременном открытии ее сфинктера. К ним присоединяется натуживание, заключающееся в произвольном сокращении мышц брюшного пресса. Эти сокращения повышают внутрибрюшное давление и тем самым способствуют лучшему извержению кала. Рефлекс дефекации может быть временно подавлен волевым усилием под влиянием импульса из коры головного мозга.
Расстройства секреторной функции кишечника могут выразиться в уменьшении или в увеличении выделения кишечного сока.
Расстройства двигательной функции кишечника выражаются в ускорении или замедлении продвижения содержимого по кишечному тракту. Вследствие ускоренного продвижения кишечного содержимого жидкие части его не успевают всосаться. В результате этого наступает диарея. При медленном продвижении и длительном пребывании в кишечнике каловые массы сильно уплотняются, в результате чего наступает запор.
Расстройство всасывательной функции кишечника выражается в недостаточном всасывании пищевых веществ в кишках. Эти расстройства зависят либо от слишком быстрого прохождения содержимого по кишечнику вследствие усиления перистальтики, либо от патологических изменений в кишечной стенке, или нарушения кровообращения в ней вследствие сердечной недостаточности, или застоя в системе воротной вены, либо, наконец, от недостаточности переваривания пищи в кишечнике, что препятствует переходу ее во всасываемую форму.

17.4. Биомеханика опорно-двигательного аппарата (ОДА)

Опорно-двигательный аппарат подразделяют на пассивный (скелет и его соединения) и активный (мышцы) компоненты.
Под скелетом вообще понимают комплекс более или менее плотных образований, имеющих в жизни организма преимущественно механическое значение. Вокруг частей скелета человека группируются мягкие ткани и органы; этим объясняется соответствие между формой скелета и формой всего тела.
Скелет человека выполняет локомоторную функцию. Пассивная часть аппарата движения включает в себя кости и их соединения. Механические функции скелета способны обеспечивать опору, защиту и движение. Опорная функция заключается в прикрепления к скелету мышц, связок и сухожилий. Под защитой понимают ограждения внутренних органов от механических повреждений. Движение осуществляется благодаря наличию костных рычагов, приводимых в действие мышцами.
Скелет взрослого человека состоит более чем из 200 отдельных костей, преобладающая часть их— парные.
Скелет человека (рис. 17.36) подразделяют на основные части: череп, позвоночник, грудную клетку, верхние (включая плечевой пояс) и нижние (включая тазовый пояс) конечности.
Череп состоит из неподвижно сочлененных костей (исключение составляет височно-нижнечелюстной сустав). Череп служит опорой и защитой многим важнейшим органам. Череп образует , полость, которая представляет как бы конечное расширение позвоночного канала и заключает в себе головной мозг с его оболочками и сосудами.
Позвоночный столб составляется из всех истинных позвонков, крестца, копчика и межпозвоночных хрящей со связочным и суставным аппаратом (рис. 17.37).
Движения между отдельными позвонками малы, но, суммируясь, они сообщают позвоночному столбу значительные перемещения. Причем позвоночный столб может совершать движения вокруг всех осей: фронтальной, сагиттальной, вертикальной.
Возможны следующие движения позвоночного столба: 1) вокруг фронтальной оси — сгибание и разгибание (первое — гораздо значительнее), наиболее свободные из всех движений позвоночника; 2) вокруг сагиттальной оси — сгибание в сторону (иначе — отведение позвоночника от срединной плоскости); вокруг вертикальной оси — повороты (скручивание); 4) пружинное движение, при котором измеряют величину кривизны позвоночника (например, при прыжках). Большей подвижностью отличаются верхний поясничный и шейный отделы.

















Рис. 17.36. Скелет взрослого человека:
1 — череп, 2 — грудная клетка, 3 — плечевая кость, 4 — позвоночник, 5 — таз, 6 — кости предплечья, 7— бедренная кость, 8 — кости голени

Рис. 17.37. Позвоночный столб:
/ — шейные позвонки, //— грудные позвонки, /// — поясничные позвонки, IV— крестцовые позвонки (крестец), V— копчиковые позвонки (копчик)

Межпозвоночные хрящи уменьшают толчки и сотрясения, образуют соединения прочные, но вместе с тем достаточно эластичные, допускающие движения во все стороны. Величина движений значительнее в том отделе позвоночника, где хрящи толще.
Каждому грудному позвонку соответствует пара ребер, из них 7 верхних соединяются своими передними концами с грудной костью. Позвоночник подразделяют на пять отделов: шейный (С1 — С), грудной (T1 — T2), поясничный (L1 — L5), крестцовый (S1 — S5), копчиковый (4—5). Длина позвоночника мужчины равняется в среднем 73 см, причем на шейный отдел приходится 13 см, на грудной — 30 см, на поясничный — 18 см и на крестцово-копчиковый — 12 см. Позвоночник женщины имеет длину в среднем 69 см. В старческом возрасте наблюдается укорочение позвоночника на 5—7 см. В общем длина позвоночного столба составляет около 2/3 всей длины тела.
Функциональное значение позвоночника чрезвычайно велико: он поддерживает голову, служит гибкой осью туловища, принимает участие в образовании стенок грудной и брюшной полостей и таза. В позвоночном канале помещается спинной мозг, его оболочки и сосуды.
Опорно-двигательная функция позвоночника во многом определяется структурными и механическими свойствами межпозвоночных дисков, соединяющих тела соседних позвонков, а также связок, соединяющих тела, дуги и отростки позвонков.
Между отдельными позвонками имеются соединения, которые связывают: 1) их тела; 2) дуги и 3) отростки. Поверхности тел двух смежных позвонков, обращенные друг к другу, соединяются межпозвоночными хрящами, который отсутствует только между I и II шейным позвонками. Число этих хрящей в позвоночнике взрослого равняется 23, толщина хряща от 2 мм (в средней грудной области) до 10 мм у нижних поясничных позвонков. Кроме того, толщина неодинакова и в различных пунктах одного и того же хрящевого диска. Общая высота всех хрящей составляет приблизительно четверть длины всего позвоночного столба (не считая крестцовой кости и копчика).
Межпозвоночные хрящи прочно соединяют тела позвонков между собой, вместе с тем они допускают известную подвижность и играют роль эластических подушек.
Межпозвоночные хрящи выдерживают вес вышерасположенных отделов тела, а также демпфируют в силу своего строения ударные нагрузки, возникающие при ходьбе и беге, при постановке ноги на землю, при приземлении и др.
На среднем распиле позвоночника видно, что размеры тел позвонков увеличиваются в направлении сверху вниз; и можно выделить кривизны позвоночника в переднезаднем направлении — физиологический лордоз — изгиб, обращенный выпуклостью кпереди; физиологический кифоз — изгиб выпуклости кзади и незначительное искривление позвоночника вбок — физиологический сколиоз. Различают: лордозы — шейный и поясничный, кифоз — грудной и крестцовый (рис. 17.38). Кривизны позвоночника возникают у человека в связи с вертикальным положением его тела (рис. 17.39).

Рис. 17.38. Иллюстрация ненормальных изгибов позвоночника. а: 1 — первичный сколиоз пояснично-грудного отдела позвоночника;
2 — компенсаторный изгиб шейно-грудного отдела. б: 1 — кифоз грудного отдела, в: 1 — лордоз поясничного отдела

Кости соединяются между собой с помощью: 1) непрерывных соединений (при помощи соединительной ткани (синдесмозы) и посредством хряща (синхондрозы); 2) полусуставов (где соединение осуществляется посредством хряща); 3) прерывных соединений (суставов, обеспечивающих высокую подвижность всего тела).
Суставы различаются по форме суставных поверхностей и степени подвижности сочленяющихся костей (см. табл. 17.7).

Рис. 17.39. Кривизна позвоночника: а — у шимпанзе, б — у человека

Сустав называется простым, если в его образовании участвуют две кости, и сложным, если его образуют три кости и более. Сустав включает основные структурные элементы (хрящи, капсулу, суставную полость) и вспомогательные образования (синовиальные складки, внутрисуставные связки, внутрисуставные хрящи, суставные губы, сесамовидные кости).
К простым суставам относятся блоковидный сустав (см. табл. 17.7). К суставам со сложной кинематикой движения относят коленный сустав.
Наличие синовиальной жидкости в суставе, ее физико-механические свойства и свойства хряща обеспечивают функциональную конгруэнтность суставных поверхностей при локомоциях (движениях). Питание внутрисуставного хряща происходит за счет интерстициальной и синовиальной жидкостей. Синовиальная жидкость обладает важными свойствами для функционирования сустава (суставов), например, высокой упругостью. Удельный вес синовии равен 1,07-104 Н/м3, а относительная вязкость (по отношению к вязкости воды, которая составляет 1,002) колеблется от 5,7 до 1160.
От наличия синовиальной жидкости в суставе и ее свойств зависит функция сустава.
С точки зрения кинематики, соединения (суставы) между отдельными звеньями (костями) представляют собой кинематические пары, идеализированные схемы которых представлены в таблице 17.7.
Подвижность кинематических цепей обеспечивается работой мышц. Равнодействующая мышечных сил действует на кости, вращающиеся вокруг осей суставов.

Таблица 17.7
Кинематические соединения скелета человека


Движение в суставах обеспечивается парой функциональных рабочих групп мышц: одноостные суставы обслуживает одна пара (две функциональные группы мышц); двухостные — две пары (четыре группы мышц); трехостные — три пары (шесть групп мышц).
Локомоторные движения осуществляет нервно-мышечный аппарат (НМА). Для анализа движений и исследования их динамики необходимо знать размеры тела человека и отдельных его частей. Они измеряются в зависимости от пола, возраста, вида деятельности и др.
В анатомо-физиологической практике принята классификация движений в суставах, связанных с осями плоскостей. Различают движения: 1) вокруг фронтальной оси (сгибание, разгибание); 2) вокруг сагиттальной оси (отведение, приведение); 3) вокруг продольной оси (вращение внутрь и вперед, вращение наружу).
Круговое движение совершается при переходе движения с одной оси на другую. При анализе движений в суставе, необходимо учитывать ограничения на эти движения.


Грудная клетка

Грудную клетку образуют 12 грудных позвонков, 12 пар ребер с их хрящами, грудная кость и сложный связочный аппарат. Форму грудной клетки сравнивают с усеченным конусом, основание которого обращено книзу. Через верхнее отверстие грудной полости проходят: дыхательное горло, пищевод, кровеносные сосуды и нервы. Нижнее отверстие закрыто грудобрюшной преградой — диафрагмой — тонкой мускульно-сухожильной пластинкой, отделяющей грудную полость от брюшной. Полость грудной клетки содержит сердце и легкие с их серозными оболочками.
Форма и особенно размеры грудной клетки подвержены значительным индивидуальным колебаниям, крайние степени которых граничат с патологическими состояниями.
С пятнадцатилетнего возраста начинают обрисовываться половые различия. У мужчины все размеры грудной клетки значительнее и она имеет более близкое сходство с конусом, у женщин разница в диаметре верхней и нижней частей не так велика, грудная клетка короче и закругленнее. Упругость грудной клетки в пожилом возрасте уменьшается (реберные хрящи омелевают, подвижность ослабевает, грудная клетка становится более длинной и плоской).

Скелет конечностей человека

Скелет каждой конечности разделяется на пояс и свободный отдел (см. рис. 2.14). Пояс расположен в пределах туловища, является для конечностей опорой и соединяет их свободный отдел со скелетом туловища.
Пояс верхней конечности состоит из двух отдельных парных костей — ключицы и лопатки.
Свободный отдел состоит из трех частей: проксимальный (плечо), средний (предплечье) и дистальный (кисть).
Пояс нижней конечности образован с каждой стороны одной тазовой костью. Тазовая кость сочленяется с крестцом и с ближайшей костью свободного отдела конечности (бедренной костью).
Свободный отдел состоит из трех частей: проксимальной (бедро), средней (голень) и дистальной (стопа).
Кости человеческого тела соединяются между собой посредством плотной волокнистой соединительной ткани, эластической ткани и хряща.
Все соединения костей можно разделить на две группы: в первой связующая ткань представляет сплошную прослойку между костями; это непрерывные соединения — синартрозы, большей частью малоподвижные или неподвижные. Подвижность их определяется растяжимостью той ткани, которая соединяет кости. Вторую группу составляют прерывные соединения более или менее подвижные, иначе сочленения, или суставы; здесь в ткани, соединяющей кости, имеется полость, непрерывность связи между костями нарушается.
Некоторые кости, например, позвонки, связаны между собой различными видами соединений, среди которых имеются суставы, синхондрозы, синдесмозы.
Следует отметить, что суставы верхней конечности отличаются большей свободой и разнообразием движений, суставы нижней конечности также весьма подвижны при меньших степенях свободы в некоторых из них (например, в тазобедренном по сравнению с плечевым, или в голеностопном по сравнению с лучезапястным и т. д.).
Нижние конечности человека служат исключительно для опоры и передвижения тела, а верхние, свободные от этой работы, развились в орган трудовой деятельности.
Кроме скелета, система органов движения включает мускулатуру (см. рис. 13.2). Мышца соединяется с костью сухожилием посредством врастания коллагеновых волокон в надкостницу или надхрящницу, либо непосредственно в кость или хрящ. Сухожилия обеспечивают крепление мышц к костям, а также передачу мышечных усилий.
Прочность сухожилия при растяжении достигает от 44 до 67 МПа, хотя для дельтовидного сухожилия было получено значение разрушающего напряжения порядка 0,6 МПа.
Поперечнополосатые мышцы теснейшим образом (анатомически и физиологически) связаны со скелетом, образуя вместе с ним систему органов опоры и движения.
Общее число скелетных мышц в теле человека — более 600. Масса их составляет у женщин до 28—35% от массы тела, у мужчин — до 40—45%, у спортсменов — 55—65%. Приблизительно 50% общей массы скелетных мышц приходится на нижние конечности, 30% — на верхние конечности и 20% — на мышцы головы и туловища.
Скелетные мускулы, которые начинаются от костей (иногда от фасций и их производных), к костям и прикрепляются.
Важным в механике является вспомогательный аппарат мышц, включающий фасции, синовиальные сумки, влагалища сухожилий, блоки мышц, сесамовидные кости.
Фасции — фиброзные оболочки, покрывающие мышцы и отдельные группы мышц. Фасции выполняют опорную функцию, крепятся к кости образуя фасциальные футляры.

<< Предыдущая

стр. 32
(из 45 стр.)

ОГЛАВЛЕНИЕ

Следующая >>