<< Предыдущая

стр. 7
(из 45 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

Примером безразличного равновесия является равновесие тела, закрепленного на оси, проходящей через его центр тяжести. Если ось проходит через другую точку и центр тяжести расположен выше оси, то возможно только неустойчивое равновесие. Равновесие будет устойчивым, если центр тяжести расположен ниже оси.
В положении устойчивого равновесия тело обладает минимальной потенциальной энергией.
Рассмотрим теперь равновесие тела, опирающегося не на одну точку, как в примере с шаром, а на целую площадку. В этих случаях условие устойчивости следующее: для равновесия необходимо, чтобы вертикаль, проведенная через центр тяжести, проходила внутри площади опоры тела.
Нарушение этого условия приводит к невозможности сохранения равновесия. Например, цилиндр, представленный на рис. 7.12, а, должен опрокинуться, потому что отвесная линия, проведенная через ЦТ, проходит вне его основания.
Стоящий человек сохраняет равновесие до тех пор, пока отвесная линия из ОЦТ находится внутри площадки, ограниченной краями его ступней, рис. 7.12, б.

Рис. 7.12. Условия равновесия

Сидящий на стуле человек держит туловище вертикально, рис. 7.12, в. ОЦТ туловища находится внутри тела (близ позвоночника, примерно на 20 см выше уровня пупка). Отвесная линия, проведенная из ОЦТ вниз, проходит через площадь опоры, ограниченную ступнями и ножками стула. В таком положении можно сидеть. Однако, для того чтобы встать, человек должен перенести линию действия силы тяжести внутрь площади, ограниченной ступнями. Для этого необходимо наклонить туловище вперед и одновременно пододвинуть ноги назад (встать можно и не меняя положения ног, если наклон вперед осуществить резко).
Простейшие механизмы

На использовании законов статики основано действие простейших механизмов, используемых для изменения величины или направления силы.
Рычаг — твердое тело чаще в виде стержня, которое может вращаться (поворачиваться) вокруг неподвижной оси.
Пусть ось делит рычаг в отношении L1:L2 и на него действуют две параллельные силы F1 и F2 (рис. 7.13). Будем также считать, что силой тяжести, действующей на рычаг, можно пренебречь.
Определим положение оси вращения (О), при котором рычаг будет оставаться в равновесии.

Рис. 7.13. Равновесие рычагов 1-го (а) и 2-го (б) рода


По правилу моментов (7.8) М1 + М2 = 0 >— F1•L1 + F2•L2 = 0 или

При равновесии рычага под действием двух параллельных сил ось вращения делит расстояние между точками приложения сил на отрезки обратно пропорциональные величинам сил.
Равновесие рычага наступает при условии, что отношение приложенных к его концам параллельных сил обратно отношению плеч и моменты этих сил противоположны по знаку. Поэтому, прикладывая небольшую силу к длинному концу рычага, можно уравновесить гораздо большую силу, приложенную к короткому концу рычага. В зависимости от взаимного расположения точек приложения сил и оси различают рычаги 1-го и 2-го рода (рис. 7.13):


Рис. 7.14. Использование шеста в качестве рычага 1-го рода
а) Рычаг 1-го рода. Силы расположены по обе стороны от оси. Подобными рычагами являются длинный шест, с помощью которого поднимают тяжелый камень (рис. 7.14.).
б) Рычаг 2-го рода. Силы расположены по одну сторону от опоры. К данному виду относится, например, тачка (рис. 7.15), при использовании которой усилие рук приложено на «максимальном» расстоянии от оси колеса (максимальное плечо), что позволяет перевозить большие грузы.

Рис. 7.15. Тачка — рычаг 2-го рода
Применение рычага в механизмах дает выигрыш в силе, при этом столько же проигрывается в перемещении. Рычаг не дает выигрыша в работе.
Многие суставы работают по принципу рычага второго рода. При этом мышцы, действуют на меньшее плечо рычага, рис. 7.16. Это приводит к проигрышу в силе, и к выигрышу в перемещении и скорости. В результате, при сравнительно малом по протяженности движении мышцы, звено или конечность описывают значительно большую траекторию.
Эта особенность в строении костно-мышечных узлов должна вызвать дополнительные осложнения в центральном регулировании движений, так как увеличение траектории перемещения звеньев сочетается с большим количеством степеней свободы подвижности, присущих человеческому телу как кинематической цепи.
Балансир (фр. balancier — коромысло) — двуплечный рычаг, совершающий качательные (колебательные) движения около неподвижной оси. Применяется в балансирующем маятнике, использующемся в механотерапии.
Блок, как и рычаг, относится к простейшим механизмам, рис. 7.17. Он выполняется в форме диска, свободно вращающегося на оси. По окружности диск имеет желоб для цепи (каната, нити). Используется равенство натяжения во всех точках цепи, которая движется без трения.
Неподвижный блок (рис. 7.17, а) не дает выигрыша в силе, но позволяет изменять ее направление. Так, можно поднимать груз вверх, действуя на веревку силой, направленной вниз, что менее утомительно: F = P.
Подвижный блок (рис. 7.17, б) дает двукратный выигрыш в силе:




Рис. 7.16. Схема действия мышцы, разгибающей ногу в коленном суставе: плечо r действия мышцы существенно короче плеча r1,стрелкой отмечено направление мышечной тяги

Для удобства применения подвижный блок часто используют в комбинации с неподвижным (рис. 7.17, в).
Аппараты блокового типа применяются в механотерапии при тренировках по облегчению (восстановлению) движений в суставах и укреплению мышц.
К простейшим механизмам относится и наклонная плоскость. При описании положения тела в этом случае используют прямоугольную систему координат, ось ОХ которой направлена параллельно плоскости, а ось ОУ — перпендикулярно ей. На тело, расположенное на наклонной плоскости, рис. 7.18, действуют сила тяжести mg, сила реакции опоры — N и сила трения Fтр . Проекции сила тяжести на координатные оси равны mg?sinб (скатывающая сила) и mg?cosб.


Рис. 7.17. Блоки: а) неподвижный, б) подвижный, в) комбинация


Рис. 7.18. Силы, действующие на тело человека, находящегося на наклонной поверхности
Условия равновесия определяются следующими соотношениями:


При движении вниз по наклонной плоскости скатывающая сила помогает движению и способствует значительному увеличению скорости. При заданной длине наклонной плоскости скатывающая сила прямо пропорциональна высоте, рис. 7.19.
Наклонная поверхность часто используется на тренировках при выполнении различных упражнений, рис. 7.20.
При восстановлении после травм эффективны занятия на специальном столе, конструкция которого позволяет изменять угол наклона его плоскости к горизонту, рис. 7.21.
Изменение угла наклона и места крепления фиксирующих ремней (на уровне крупных суставов ног, поясничного и грудного отделов позвоночника) позволяет дозировать нагрузку на опорно-двигательную, сердечно-сосудистую и вестибулярную системы.


Рис. 7.19. Движение велосипедиста с наклонной плоскости: а) большая высота, б) малая высота

Рис. 7.20. Упражнения на наклонной плоскости:
а) выпрямление туловища, б) поднимание ног,
в) упражнения для рук с гантелями

Рис. 7.21. Тренировка ортостатических функций на специальном наклонном поворотном столе

Элементы механики опорно-двигательного аппарата человека

Опорно-двигательный аппарат человека состоит из сочлененных между собой костей скелета. Кости скелета действуют как рычаги, которые имеют точку опоры в сочленениях или во внешней среде и приводятся в движение силой тяги, возникающей при сокращении мышц, прикрепленных к костям.
Рычаг первого рода, обеспечивающий перемещение или равновесие головы в сагиттальной плоскости.
На рис. 7.22 изображен череп и действующие на него силы.
Ось вращения (О) проходит через сочленение черепа с первым позвонком. На череп действуют две силы, приложенные по разные стороны от оси.
• Сила тяжести (R), приложенная к центру тяжести черепа. Плечо этой силы обозначено буквой Ь.
• Сила тяги мышц и связок (F), приложенная к затылочной кости. Плечо этой силы обозначено буквой а.

Рис. 7.22. Рычаг в сагиттальной плоскости черепа
Условие равновесия рычага F?а = R?b.
Рычаг второго рода, дающий человеку возможность вставать на цыпочки.
На рис. 7.23 изображена стопа и действующие на нее силы.

Рис. 7.23. Стопа в положении на цыпочках

Ось вращения (О) проходит через головку плюсневых костей. На стопу действуют две силы, приложенные по одну сторону от оси.
• Сила тяжести (R), равная половине силы тяжести, действующей на все тело. Плечо этой силы обозначено буквой b — расстояние от соединения стопы до точки контакта плюсны и пола (обычно 12см);
• Сила тяги мышц (F), передаваемая с помощью ахилловых сухожилий и приложенная к выступу пяточной кости. Плечо этой силы обозначено буквой а — расстояние от точки опоры до точки действия ахилловых сухожилий (обычно 18 см).
Условие равновесия рычага: F?a = R?b. В данном случае а > b, следовательно, F < R. Поэтому рычаг дает выигрыш в силе, но проигрыш в перемещении.
По принципу рычага второго рода работает предплечье человека.
На рис. 7.24 изображены предплечье и кисть с грузом, а также действующие на них силы.

Рис. 7.24. Кости предплечья, участвующие в удержании предмета кистью

Ось вращения (О) находится в локтевом суставе. На рычаг действуют две силы, приложенные по одну сторону от оси.
• Сила тяжести (R), равная весу груза. Плечо этой силы обозначено буквой b.
• Сила тяги мышц (F), передаваемая с помощью бицепса. Плечо этой силы обозначено буквой а.
Условие равновесия рычага: р?а = R?b. В данном случае а < b, следовательно, F > R. Поэтому рычаг дает проигрыш в силе (примерно в 8 раз). Целесообразно ли такое устройство? На первый взгляд, как будто нет, поскольку имеется потеря в силе. Однако согласно «золотому правилу» механики потеря в силе вознаграждается выигрышем в перемещении: перемещение кисти в 8 раз больше
величины сокращения мышцы. Одновременно происходит и выигрыш в скорости движения: кисть движется в 8 раз быстрее, чем сокращается мышца.
Таким образом, способ прикрепления мускулов, который имеется в теле человека (животных), обеспечивает конечностям быстроту движений, более важную в борьбе за существование, нежели сила. Человек был бы крайне медлительным существом, если бы руки у него не были устроены по этому принципу.

Системы вытяжки костей при переломах

При сращивании сломанных костей необходимо фиксировать поврежденные участки и устранить силы, которые обычно действуют в месте перелома, до тех пор, пока он не срастется. Для этого используют различные комбинации грузов и блоков.
На рис. 7.25, а показана система вытяжки с использованием двух одинаковых грузов и двух блоков. В этом случае силы натяжения Т1 и Т2 равны. Те же условия можно создать и другим способом (рис. 7.25, б), используя один груз и комбинацию из подвижного и неподвижного блоков. В этом случае общая сила, действующая на ногу, равна векторной сумме двух сил натяжения (рис. 7.25, в).

Рис. 7.25. Два способа вытяжки: а) два груза и два блока, б) один груз и два блока, в) результирующая сила (F)




Рис. 7.26. Система вытяжки Рассела
На рис. 7.26, а показана система вытяжки Рассела, применяемая для фиксации сломанного бедра. Эта система получена добавлением к системе, изображенной на рис. 7.25, еще двух блоков для обеспечения связи с коленом. Бедро устанавливается под углом и = 20° к горизонтали. Остальные углы указаны на рисунке. При этом векторная сумма трех сил натяжения, обозначенная на рис. 7.26, б, F, имеет оптимальное направление.

Глава 8 НЕИНЕРЦИАЛЬНЫЕ СИСТЕМЫ ОТСЧЕТА
8.1. Сила инерции. Принцип Д'Аламбера

В ряде случаев возникает необходимость описать движение, покой или равновесие тела, находящегося в неинерциальной системе отсчета. Например, требуется выяснить какие проблемы могут возникнуть у человека, находящегося в кабине космического корабля. Французский физик Д'Аламбер сформулировал простой принцип, позволяющий отвечать на вопросы о поведении тела в неинерциальной системе. Рассмотрим тело, которое находится в неинерциальной системе, движущейся относительно инерциальной системы с ускорением ас.
Векторная величина, равная произведению массы тела на ускорение системы и направленная в сторону, противоположную ускорению системы, называется силой инерции:
Fи=-m?ac. (8.1)

Сила инерции не является реальной силой, так как она не действует со стороны какого либо тела. Однако в неинерциальной системе ее можно (и нужно!) рассматривать, как обычную силу. При этом можно «забыть» о том, что система неинерциальна.
Д'Аламбер установил, что если ко всем реальным силам (действующим со стороны других тел) добавить силу инерции, то в неинерциальной системе можно использовать все законы и формулы, которые справедливы для инерциальных систем.
Пример
Пусть тело массой т подвешено на нити в кабине космического корабля, который стартует с Земли и поднимается вверх с ускорением «а».
Система отсчета, связанная с таким кораблем является неинерционной и к ней применим принцип Д'Аламбера (ускорение системы — это ускорение корабля: ас = а). На тело действуют сила тяжести со стороны земли (mg) и сила натяжения нити (Т) (рис. 8.1). Добавим к ним силу инерции Fи = т?а, которая направлена вниз (в сторону, обратную ускорению). Теперь можно описать покой тела относительно корабля: Т + mg + Fи = 0. Учитывая направления сил, получим уравнение для их величин: Т — mg — Fи = 0. Откуда найдем натяжение нити, удерживающей тело:



Рис. 8.1. Использование силы инерции
Установлено, что сила инерции неотличима от силы гравитации (силы тяготения). В рассматриваемом примере это означает, что никакие опыты, поставленные внутри корабля, не смогут дать ответ на вопрос, какая из ситуаций имеет место:
• либо мы находимся не в корабле, а на какой-то планете, где ускорение свободного падения равно g + a;
• либо мы движемся с ускорением g + а на космическом корабле вдали от каких-либо планет (гравитационные силы отсутствуют);
• либо мы стартуем с Земли, поднимаясь с ускорением «а». Во всех этих случаях результаты любого опыта будут совершенно одинаковы.

8.2.Сила тяжести.Вес тела

Сила тяжести
Так как сила тяготения и сила инерции неотличимы, то при использовании неинерциальной системы их обычно складывают (как вектора) и эту сумму называют силой тяжести.
Силой тяжести, действующей на тело в неинерциальной системе отсчета, называется сумма силы тяготения и силы инерции:

F тяж = F тяг +F и (8.2)


В рассмотренном выше примере со стартующим кораблем (рис. 8.1) сила тяжести равна:


Сила тяжести сообщает всем телам одинаковое ускорение (относительно данной системы), которое называют местным ускорением свободного паденияВ примере со стартующим кораблем
gm=a+g.
Обратим внимание на то, что сила тяжести зависит от того, какой системой отсчета мы пользуемся. Так, например, в рассматриваемом случае можно поступить одним из двух способов.
1. Выбрать систему, связанную с Землей. В этой системе тело движется с ускорением под действием силы натяжения нити (Т) и силы тяжести (mg). Уравнение движения:
Т - mg = та.
2. Выбрать систему, связанную с кораблем. В этой системе тело находится в состоянии покоя под действием силы натяжения нити (Т) и местной силы тяжести (mg + та). Уравнение покоя:
T = mg+ma.
Очевидно, что эти уравнения одинаковы.
Для человека, находящегося в корабле, естественным является второй способ. Поэтому он скажет, что при старте сила тяжести возрастает.
С направлением силы тяжести неразрывно связаны такие понятия, как вертикаль и горизонталь.
Вертикалью называется линия, вдоль которой направлена сила тяжести.
Горизонтальной плоскостью называется плоскость, которая перпендикулярна силе тяжести.
Формула (8.2) определяет силу тяжести в любой неинерциальной системе отсчета. Применим ее к Земле, неинерциальность которой связана с вращением вокруг своей оси. Вследствие этого точки земной поверхности обладают центростремительным ускорением (ац), которое и является ускорением неинерциальной системы (ас = ац). По формуле (8.2) находим силу инерции:

Знак «—» указывает на то, что сила инерции направлена от оси вращения Земли.
Сила тяготения направлена к центру Земли. Складывая эти силы, находим силу тяжести (рис. 8.2).

Рис. 8.2. Сила тяготения и сила тяжести

На рис. 8.2 видно отличие силы тяжести от силы тяготения. Наибольшей величины это отличие достигает на экваторе, где сила тяготения и сила инерции направлены по одной прямой в противоположные стороны. При сложении таких векторов (8.2) их величины вычитаются:

Таким образом, сила тяжести отличается от силы тяготения на величину силы инерции. Велико ли это отличие? Для ответа на этот вопрос найдем отношение силы инерции к силе тяжести. Сила тяжести создает ускорение свободного падения: Ргяж = m-g (g = 9,8 м/с2). Сила инерции вычисляется по формуле (8.3) F = т-а , деля величины этих сил, найдем
(8.6)
Центростремительное ускорение рассчитывается по формуле (3.9):

где R — радиус обращения тела, а 0) — угловая скорость вращения Земли. Для экватора R = 6 400 000 м — радиус Земли. Угловая скорость выражается через период обращения (Т), который для Земли составляет 1 сутки или 86400 с. В соответствии с формулой (3.10) щ=. Центростремительное ускорение на экваторе ац= щ 2R 0,03 м/с2. Подставив это значение в (8.5) получим

Из приведенных расчетов видно, что для Земли сила инерции составляет всего 0,3% от силы тяжести. Поэтому в большинстве случаев неинерциальностью Земли можно пренебречь.

Вес тела

Рассмотрим, что происходит, когда некоторый груз кладут на горизонтальную плоскость (опору). В первый момент после того, как груз отпустили, он начинает двигаться вниз под действием силы тяжести (рис. 8.3). Плоскость прогибается и возникает сила упругости (реакция опоры), направленная вверх. После того, как сила упругости (F ) уравновесит силу тяжести, опускание тела и прогиб опоры прекратятся.
Прогиб опоры возник под действием тела, следовательно, со стороны тела на опору действует некоторая сила (Р), которую называют весом тела (рис. 8.3, б). По третьему закону Ньютона вес тела равен по величине силе реакции опоры и направлен в противоположную сторону.




Рис. 8.3. Силы, действующие на тело (а) и опору (б) тела равен по величине силе реакции опоры и направлен в противоположную сторону.

Вместо опоры можно использовать подвес.
Весом тела называют силу Р, с которой тело действует на неподвижную относительно него горизонтальную опору (или неподвижный относительно него подвес).
Вес не следует путать с массой тела. Масса тела характеризует его инертные свойства и не зависит ни от силы тяготения, ни от ускорения, с которым оно движется. Вес тела характеризует силу, с которой оно действует на опору и зависит как от силы тяготения, так и от ускорения движения. Например, на Луне вес тела примерно в 6 раз меньше, чем вес тела на Земле. Масса же в обоих случаях одинакова и определяется количеством вещества в теле.
Вес тела — понятие скорее инженерное, чем физическое, и используется не часто. Например, при проектировании моста указывают вес, который он должен выдерживать. В быту понятие «вес» используется, как правил о, некорректно, поскольку имеется в виду масса тела. Например, когда говорят о весовых категориях, в спорте, то подразумевают не силу, с которой спортсмен давит на помост, а его массу. В то же время, говоря о весе поднятой штанги, понятие «вес» употребляют совершенно правильно, так как речь идет о силе, с которой штанга действует на человека. Существующая путаница в употреблении понятия «вес» не влечет никаких отрицательных последствий, так как в каждой области люди интуитивно понимают, что имеется в виду.
В быту, технике, спорте вес часто указывают не в ньютонах (Н), а в килограммах силы (кгс). Переход от одной единицы к другой осуществляется по формуле
1кгс = 9,8Н.



8.3. Перегрузки и невесомость. Движение в безопорном пространстве. Искусственное тяготение

Перегрузки

Вес тела приложен к опоре, а не к самому телу, и может измениться в зависимости от движения опоры.
Например, вес тела в покое на Земле равен mg, а вес тела в покое в кабине стартующего корабля больше чем на Земле и равен m?(g + а), как следует из формул 8.3 и 8.7.
Состояние, при котором вес тела больше, чем на Земле, называют перегрузкой.
Если пользоваться системой отсчета, в которой тело находится в состоянии покоя, то вес тела равен (и по величине и по направлению) действующей на него силе тяжести (формула 8.7). Поэтому можно сказать, что перегрузку испытывает тело, находящееся в системе отсчета, в которой сила тяжести превышает земную. Величину перегрузки принято характеризовать отношением силы тяжести, действующей в данной системе отсчета, к силе тяжести на Земле. Например, если космический корабль стартует с ускорением а = 4g, то согласно формуле (8.3) вес тела в корабле равен 5mg, а вес тела на земле равен mg. Отношение этих величин равно пяти. Поэтому в корабле человек испытывает пятикратную перегрузку.

Рис. 8.4. Перегрузки, возникающие при выходе самолета из пикирования

Перегрузки испытывает и летчик, выводящий самолет из пикирования, рис. 8.4. Если радиус кривизны в нижней части траектории — R и самолет движется со скоростью v, то возникает центростремительное ускорениенаправленное вверх. Следовательно, в нижней точке траектории летчик давит на сиденье с силой:

Пропорции и размеры человеческого тела, сила мышц и прочность костей приспособлены к существованию в условиях земной силы тяжести. Поэтому если человек оказывается в системе, где сила тяжести значительно превышает земную, он испытывает затруднения в выполнении самых обычных движений.
Для подготовки человека к работе в условиях значительной перегрузки необходимы специальные тренировки. Для этого используют центрифугу, которая представляет собой кабину, вращающуюся в горизонтальной плоскости на длинной штанге, рис. 8.5.


Рис. 8.5. Принцип создание перегрузок на центрифуге

Пусть радиус штанги г, и кабина вращается с угловой скоростью щ. В этом случае кабина имеет центростремительное ускорение ац = щ 2 ?r и на тело внутри нее действует сила инерции Fи = m щ2 r. Согласно принципу Д'Аламбера, сила тяжести в кабине равна векторной сумме силы инерции и силы тяжести на Земле:
Fтяж=Fи+тg.

Ее величина находится по теореме Пифагора:


Величина перегрузки определяется отношением силы тяжести в кабине к земной силе тяжести:

Таким способом при большой угловой скорости вращения можно создать практически любую перегрузку.
В табл. 8.1 представлены значения перегрузок, возникающих в некоторых условиях.
Таблица 8.1
Значения некоторых перегрузок
Условия перегрузки
Перегрузка
Перегрузка неподвижно стоящего человека
1
Пассажир при взлете самолета
до 1,5
Парашютист во время раскрытия парашюта при скорости падения 30 м/с
1,8
« ------ » ------ » ------ » ------ » ---------40м/с
3,3
« ------ » ------ » ------ » ------ » --------- 50 м/с
5,2
Летчик в момент катапультирования из самолета
ДО 16
Перегрузки при спуске космического корабля «Восток»
до 8—10
Перегрузки при спуске космического корабля «Союз»
до 3—4

В табл. 8.2 представлены значения кратковременных перегрузок, переносимых человеком.
Таблица 8.2
Кратковременные перегрузки, относительно безболезненно переносимые тренированным человеком
Направление местной силы тяжести
Перегрузка
в направлении «спина — грудь» и «грудь — спина»
до 30
в направлении «голова — ноги»
до 20
в направлении «ноги — голова»
до 8

Для того, чтобы человек мог переносить значительные перегрузки, применяются специальные устройства: катапультные и амортизационные кресла, привязные системы, защитные шлемы и др.

Невесомость

Невесомость возникает внутри любого аппарата, который движется под действием одной единственной силы — силы тяготения. В этом случае сила инерции равна по величине и противоположна по направлению силе тяготения и сила тяжести внутри аппарата равна нулю (формула 8.2). Поэтому предметы, покоящиеся относительно станции, не оказывают воздействия на опору и их вес равен нулю.
Невесомостью называется такое состояние тела, при котором его вес равен нулю.
Невесомость возникает, например, внутри космического корабля, который движется в безвоздушном пространстве с выключенными двигателями.
Практика показала, что работа человека в условиях невесомости требует специальных навыков, а длительное пребывание в невесомости отрицательно сказывается на физическом состоянии человека и животных. Все это необходимо учитывать при подготовке пилотируемых космических полетов.
Для работы в условиях невесомости и пониженной силы тяжести (например, на Луне) космонавт должен понимать суть этих явлении и, конечно, уметь правильно двигаться. Знания о двигательной активности человека в невесомости и при пониженной силе тяжести накапливаются в ходе специальных медико-биологических экспериментов, широко использующих биомеханические методы. Такие эксперименты, например, показали, что при пониженном тяготении темп и энерготраты локомоторных движений человека снижаются; локомоции и состояние человека характеризуются увеличенным сгибанием в крупных суставах; становится доступен способ передвижения прыжками.
Кратковременное состояние невесомости в земных условиях можно создать в самолете, движущемся по параболической траектории. Это используется при подготовке космонавтов. Кроме того, Для имитации пониженного тяготения разработаны специальные стенды. С помощью биомеханики разрабатываются также средства, облегчающие движения человека в необычных условиях.

Движение в безопорном пространстве

<< Предыдущая

стр. 7
(из 45 стр.)

ОГЛАВЛЕНИЕ

Следующая >>