<< Предыдущая

стр. 9
(из 45 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

Рассмотрим некоторые примеры, иллюстрирующие действие этого закона.
На рис. 9.10, а спортсменка стоит, опираясь правой ногой на скейтборд, а левой отталкивается от земли. Достигнутая при толчке скорость зависит от силы толчка и от времени, в течение которого эта сила действует.
На рис. 9.10, б изображен метатель копья. Скорость, которую приобретет копье данной массы, зависит от силы, приложенной рукой спортсмена и от времени, в течение которого она приложена.

Рис. 9.10. а) Спортсменка на скейтборде; б) метатель копья

Рис. 9.11.
Толкание ядра
Поэтому перед броском копья спортсмен заносит руку далеко назад. Более детально подобный процесс разобран ни примере спортсмена, толкающего ядро, рис. 9.11.
Из равенства (9.14) вытекает одно важное для практического применения следствие, называемое законом сохранения импульса. Рассмотрим систему тел, на которую не действуют внешние силы. Такую систему называют замкнутой.
Система тел, которые взаимодействуют только между собой и не взаимодействуют с другими телами, называется замкнутой.
Для такой системы внешних сил нет (F = 0 и dp = 0). Поэтому имеет место закон сохранения импульса.
Векторная сумма импульсов тел, входящих в замкнутую систему, остается неизменной (сохраняется).
Иными словами, для любых двух моментов времени импульсы замкнутой системы одинаковы:
p1=p2(9.15)
Закон сохранения импульса — это фундаментальный закон природы, не знающий никаких исключений. Он абсолютно точно соблюдается и в макромире и в микромире.
Конечно, замкнутая система — это абстракция, так как практически во всех случаях внешние силы есть. Однако для некоторых типов взаимодействий с очень малой длительностью наличием внешних сил можно пренебречь, так как при малом интервале действия импульс силы можно считать равным нулю:
F?dt0>dp0.
К процессам малой длительности относятся
• соударения движущихся тел
• распад тела на части (взрыв, выстрел, бросок).

Примеры

В боевиках часто присутствуют сцены, в которых после попадания пули человека отбрасывает по ходу выстрела. На экране это выглядит довольно эффектно. Проверим, возможно ли это? Пусть масса человек М =70 кг и он в момент попадания пули находится в состоянии покоя. Массу пули примем равной т = 9 г, а ее скорость v = 750 м/с. Если считать, что после попадания пули человек приходит в движение (в действительности этому может помешать сила трения между подошвами и полом), то для системы человек— пуля можно записать закон сохранения импульса: р1 = р2. Перед попаданием пули человек не движется и в соответствии с (9.9) импульс системы р1 = m•v +0. Будем считать, что пуля застревает в теле. Тогда конечный импульс системы р2 = (М + т)•и, где и — скорость, которую получил человек при попадании пули. Подставив эти выражения в закон сохранения импульса, получим:


Полученный результат показывает, что ни о каком отлетании человека на несколько метров не может быть и речи (кстати, тело, брошенное вверх со скоростью 0,1 м/с, поднимется на высоту всего 0,5 мм!).

2) Столкновение хоккеистов.

Два хоккеиста массой М1 и М2 двигаются навстречу друг другу со скоростями, соответственно, v1, v2 (рис. 9.12). Определить общую скорость их движения, считая столкновение абсолютно неупругим (при абсолютно неупругом ударе тела «сцепляются» и двигаются далее как одно целое).

Рис. 9.12. Абсолютно неупругое столкновение хоккеистов

Применим закон сохранения импульса к системе, состоящей из двух хоккеистов. Импульс системы перед столкновением p1=M1•v1 — M2v2. В этой формуле стоит знак «—» потому, что скорости v1 и v2 направлены навстречу друг другу. Направление скорости v1 считается положительным, а направление скорости v2 — отрицательным. После неупругого столкновения тела движутся с общей скоростью v и импульс системы р2 = (Ml + M2)•v. Запишем закон сохранения импульса и найдем скорость v:

Направление скорости v определяется ее знаком.
Обратим внимание на одно важное обстоятельство: закон сохранения импульса можно применять только к свободным телам. Если движение одного из тел ограничено внешними связями, то общий импульс сохраняться не будет.

Реактивное движение

На использовании закона сохранения импульса основано реактивное движение. Так называют движение тела, возникающее при отделении от тела с какой-то скоростью некоторой его части. Рассмотрим реактивное движение ракеты. Пусть ракета и ее масса вместе с топливом М покоится. Первоначальный импульс ракеты с топливом равен нулю. При сгорании порции топлива массы т образуются газы, которые выбрасываются через сопло со скоростью и. По закону сохранения импульса общий импульс ракеты и топлива сохраняется: р2 = p1 > т•и +(М - m)•v = 0, где v — скорость, полученная ракетой. Из этого уравнения находим: v = -т•и /(М - т). Мы видим, что ракета приобретает скорость, направленную в сторону противоположную направлению выброса газа. По мере сгорания топлива скорость ракеты непрерывно возрастает.
Примером реактивного движения является и отдача при выстреле из винтовки. Пусть винтовка, масса которой m1 = 4,5 кг, стреляет пулей массой т2 = 11 г, вылетающей со скоростью v1 = 800 м/с. Из закона сохранения импульса можно высчитать скорость отдачи:

Такая значительная скорость отдачи возникнет, если винтовка не прижата к плечу. В этом случае стрелок получит сильный удар прикладом. При правильной технике выстрела стрелок прижимает винтовку к плечу и отдачу воспринимает все тело стрелка. При массе стрелка 70 кг скорость отдачи в этом случае будет равна 11,8 см/с, что вполне допустимо.


9.4. Применение закона сохранения импульса к ударам

Соударения часто встречаются в спорте: удары теннисной ракеткой, бейсбольной битой, клюшкой по мячу и шайбе, соударения бильярдных шаров, соударения футболистов и хоккеистов и т. д.
Ударом называется столкновение между двумя телами, если оно происходит за очень короткое время и силы взаимодействия при этом столь велики, что можно пренебречь всеми остальными силами.
(Сила удара боксера средней весовой категории — 2 кН, сила удара футболиста по мячу — 7,8 кН). Обычно время соударения много меньше по сравнению со временем наблюдения.
В физике принята следующая классификация ударов.

Абсолютно упругий удар

Это такой удар, при котором не происходит необратимых преобразований кинетической энергии во внутреннюю энергию тел.
При абсолютно упругом ударе свободных тел сохраняется кинетическая энергия системы и ее импульс. Формы всех тел после завершения удара восстанавливаются.
Упругое столкновение в макроскопическом мире — это недостижимый идеальный случай, так как часть кинетической энергии тел всегда переходит в другие виды энергии (тепловую, звуковую и т. п.).

Абсолютно неупругий удар

Это удар, при котором после столкновения тела «слипаются».
При абсолютно неупругом соударении свободных тел импульс системы сохраняется, а ее кинетическая энергия уменьшается (потерянная кинетическая энергия переходит во внутреннюю энергию — тела нагреваются). Деформации тел в процессе такого удара постоянно нарастают и формы тел после завершения удара не восстанавливаются .

Реальные удары

Абсолютно упругий и абсолютно неупругий удары — это идеальные предельные случаи. При соударении реальных тел имеют место элементы, свойственные как упругим, так и неупругим ударам.
Характерные свойства абсолютно упругого и абсолютно неупругого ударов наглядно проявляются в системе отсчета, связанной с центром масс сталкивающихся тел. В этой системе отсчета удары выглядят очень просто.
Абсолютно упругий удар
Абсолютно неупругий удар
Удар реальных тел
Тела движутся навстречу друг другу со скоростями vv v2 и после удара расходятся с такими же скоростями:
v = v1, v=v2
Тела движутся навстречу друг другу со скоростями v1, v2 и после удара останавливаются:
v=0, v=0
Тела движутся навстречу друг другу со скоростями v1, v2 и после удара расходятся со скоростями:
v=kv1, v= kv2
(0 < k< 1).



Таким образом, в системе центра масс величины скоростей не изменяются
Таким образом, в системе центра масс величины скоростей после удара становятся равными нулю
Таким образом, в системе центра масс величины скоростей изменяются одинаково
Коэффициент k одинаков для обоих тел и показывает в системе центра масс, чему равно отношение величины скорости тела после удара (v1) к величине скорости до удара:


Его называют коэффициентом восстановления скорости. Он характеризует степень упругости. Если k = 1, то удар абсолютно упругий (удар стального шара о стальную плиту); если k = О, то удар абсолютно неупругий (удар комка влажной глины о плиту).
При игре в теннис коэффициент восстановления может принимать значения до 0,7.

Игра в теннис

При игре в теннис резкое изменение характера движения мяча при ударе ракетки обусловлено силой, действующей на него со стороны ракетки. Время действия силы удара очень мало, но ее величина весьма значительна. И мяч, и ракетка при столкновении деформируются довольно сильно (рис. 9.13).
Подача мяча при игре в теннис — пример неупругого соударения. Все параметры удара представлены на рис. 9.14.
Ракетка массой М со скоростью v0 ударяет по неподвижному мячу массой т. После того, как мяч отделился от поверхности ракетки, он движется со скоростью и, а скорость ракетки после этого становится v. Рассматривая ракетку и мяч как изолированную систему, можно записать закон сохранения импульса:
Mv0 = Mv + ти.
Высокоскоростная съемка позволяет определить скорость ракетки в момент удара и после удара, а также скорость мяча после удара. Найденные таким путем скорости можно использовать для вычисления потерь кинетической энергии при выполнении подачи. Для профессионального игрока разность между кинетической энергией ракетки перед ударом и суммарной кинетической энергией ракетки и мяча после удара составляет приблизительно 30—35 Дж. Эта энергия превращается в другие формы энергии, а именно в тепловую и звуковую ( всегда слышен удар ракетки по мячу).



Рис. 9.13. Удар теннисной ракеткой по мячу: деформируются оба тела


Рис. 9.14. Взаимодействие ракетки и мяча при игре в теннис

Удар ногой по мячу

При изучении баллистического движения спортсменов, выполняющих удары, было обнаружено, что, если в начале выполнения такого движения все усилия, приложенные к центрам тяжести звеньев кинематической цепи (нога), направлены по ходу движения, то перед самым соприкосновением с ударяемым предметом эти усилия меняют свое направление на обратное (рис. 9.15).
Физиологически этому торможению соответствует активность антагонистов (совершенно пассивных в начальной фазе движения), хорошо прослеживаемая при отведении биоэлектрических потенциалов соответствующих мышц ( рис. 9.16).

Рис. 9.15. Направление усилий, приложенных к центрам тяжести звеньев ноги
спортсмена, выполняющего удар по мячу: / и // — начало движения; ///— момент соприкосновения стопы с мячом; IV— момент после удара

Рис. 9.16. Биоэлектрическая активность мышц ноги спортсмена,
выполняющего удар по мячу: 1 — прямая мышца бедра; 2 — двуглавая мышца бедра; 3 — передняя большеберцовая ; 4 — икроножная

Описываемое явление имеет под собой совершенно определенные физические причины. При нанесении любого удара весьма важно превратить мягкую кинематическую цепь ноги в единый жесткий рычаг (сделать ее стержнем). В этом случае в ударе примет участие не только масса конечного звена цепи, но и массы всех остальных звеньев (что заметно повышает массу ударяющего предмета). Превратившись в жесткую систему, кинематическая цепь конечности не будет в самые решающие мгновения амортизировать и, следовательно, передаст ударяемому предмету максимально возможное количество кинетической энергии.


9.5. Соударение предмета с движущимся массивным препятствием

Многие удары в игровых видах спорта можно рассматривать как столкновение мяча с движущейся «преградой». К таким соударениям, например, относятся прием мяча в теннисе, футболе, волейболе и т.п. Вследствие того, что конечность, наносящая удар, превращается в жесткую кинематическую цепь, удар мяча воспринимает не отдельное звено, а практически все тело. Масса тела во много раз больше массы мяча и его (тела) скорость в результате соударения практически не меняется. Для описания таких соударений существуют простые и удобные формулы. Мы рассмотрим два случая.
1. Перед ударом мяч и препятствие движутся навстречу друг другу. Скорость мяча — v0, скорость препятствия — и (рис. 9.17, а).
Обозначим коэффициент восстановления скорости мяча k. Тогда скорость мяча после удара (рис. 9.17, б) определяется формулой

v = k?v0+(k + 1)?u. (9.17)

Во встречных ударах скорость после удара может оказаться больше, чем до удара. В частности, при абсолютно упругом ударе (k = 1) она возрастет на 2и.
2. Перед ударом мяч движется на «убегающее» от него препятствие. Скорость мяча — v0, скорость препятствия — и (рис. 9.18, а).
Обозначим коэффициент восстановления скорости мяча k. Тогда скорость мяча после удара (рис. 9.18, б) определяется формулой
v = k?v0-(k + 1)•u. (9.18)



Рис. 9.17. Встречное соударение мяча с движущейся преградой: а) до удара, б) после


Рис. 9.18. Соударение мяча с «убегающей» преградой: а) до удара, б) после
При соударениях «вдогонку» скорость после удара всегда меньше чем до удара. Это используют для «укрощения» мяча при приеме. Например, футболист, принимающий мяч на грудь и сбрасывающий его себе под ноги, в момент приема мяча резко подает корпус назад.


9.6. Закон сохранения момента импульса

В подразделе 7.2 было введено понятие момента импульса произвольного тела и получено уравнение (7.6), описывающее изменение момента импульса под действием моментов сил. Если внешние силы не создают вращательного момента (М = 0), то уравнение (7.6) принимает вид, который выражает важный закон сохранения момента импульса:
dL = 0>L = const. (9.19)
Если суммарный момент внешних сил, действующих на тело, вращающееся вокруг оси, равняется нулю, то его момент импульса остается постоянным.
Этот закон применяется при рассмотрении вращения системы тел вокруг общей оси. Примеры, иллюстрирующие этот закон, представлены на рис. 9.19.


Рис. 9.19. Примеры проявления закона сохранения момента импульса: а) гимнаст, б) фигурист

Гимнаст, выполняющий сальто (рис. 9.19, а), в начальной фазе сгибает колени и прижимает их к груди, уменьшая тем самым момент инерции и увеличивая угловую скорость вращения вокруг горизонтальной оси. В конце прыжка его тело выпрямляется, момент инерции возрастает, угловая скорость уменьшается.
Фигурист, совершающий вращение вокруг вертикальной оси (рис. 9.19, б), в начале вращения приближает руки к корпусу, тем самым уменьшая момент инерции и увеличивая угловую скорость. Так, если момент инерции фигуриста уменьшается в два раза, то во столько же раз увеличивается его угловая скорость. В конце вращения происходит обратный процесс: при разведении рук увеличивается момент инерции и уменьшается угловая скорость, что позволяет легко остановиться.
Во время прыжка в воду с трамплина, толчок, испытываемый спортсменом в момент отрыва от гибкой доски, «закручивает» его, т. е. сообщает прыгуну начальный запас момента импульса относительно его ЦМ. Прежде чем прыгнуть в воду, прыгун совершает один или несколько оборотов с большой угловой скоростью; затем он вытягивает руки, увеличивая тем самым свой момент инерции и, следовательно, снижая свою угловую скорость до совсем небольшой величины перед входом в воду. Момент инерции при этом может измениться в 3,5 раза.
Глава 10 МЕХАНИЧЕСКИЕ КОЛЕБАНИЯ

10.1. Свободные колебания: гармонические и затухающие колебания

Внутри любого живого организма и в окружающей его среде непрерывно происходят разнообразные повторяющиеся процессы, например, работа сердца, движение маятника. Все эти явления подчиняются общим закономерностям, которые рассмотрим на примере механических колебаний.
Колебания — это движения или изменения состояния, обладающие той или иной степенью повторяемости.

Свободные колебания

Система из нескольких взаимодействующих тел, в которой могут происходить колебания, называется колебательной системой. Для колебательной системы характерно наличие состояния равновесия — такого взаимного расположение тел, которое при отсутствии внешнего воздействия может сохраняться сколь угодно долго. Для возбуждения колебаний необходимо вывести систему из равновесного состояния. Это можно сделать двумя способами:
• однократным внешним воздействием отклонить одно или несколько тел системы от равновесного положения;
• однократным внешним воздействием сообщить одному или нескольким телам системы начальные скорости.
Свободными механическими колебаниями называют колебательные движения системы, выведенной из положения равновесия вследствие начального смещения или сообщения начальной скорости.
Такие колебания совершаются при отсутствии внешнего воздействия за счет первоначально накопленной энергии. Свободные колебания возможны только в том случае, когда при отклонении тела от равновесного положения возникает сила, направленная в сторону положения равновесия. Такую силу называют возвращающей.

Пример

Колебательными движениями являются движения при свободных качаниях гимнаста в висе (вис — это положение тела, при котором гимнаст располагается плечами ниже опоры, удерживаясь руками или ногами) на перекладине. При движении его вниз момент силы тяжести относительно оси перекладины ускоряет движение. Во время движения вверх момент силы тяжести замедляет движение, так как действует ему навстречу.

Рис. 10.1. Силы, изменяющие движение вокруг оси: при движении вниз сила тяжести ускоряет тело гимнаста, при движении вверх — замедляет

Гармонические колебания

Рассмотрим движение пружинного маятника — материальной точки массой т, подвешенной на пружине с жесткостью k. Если пружину оттянуть (сжать) на расстояние к от положения равновесия, то возникнет дополнительная упругая сила, величина и направление которой определяются законом Гука:
F = —k?x.(10.1)
Знак «—» показывает, что сила упругости всегда направлена в сторону, противоположную направлению смещения, т. е. к положению равновесия.
Предположим, что силы сопротивления отсутствуют. Тогда, подставив выражение (10.1) в формулу второго закона Ньютона, получим дифференциальное уравнение свободных колебаний при отсутствии трения:



Преобразуем выражение (10.2) следующим образом: Отношение положительно, поэтому целесообразно заменить его квадратом некоторой величины:



Получили дифференциальное уравнение второго порядка:


Его решение приводит к гармоническому закону:

где А — амплитуда колебаний,
щ0 — собственная круговая (циклическая) частота колебаний,
ц= (ц0t + ц0) — фаза колебаний,
ц0—начальная фаза колебаний (при t = 0).
Амплитуда и начальная фаза колебаний определяются начальными условиями движения, т. е. положением и скоростью материальной точки в момент времени t = 0.
Гармоническими колебаниями называются колебания, при которых наблюдаемая величина изменяется во времени по закону синуса или косинуса.
Таким образом, пружинный маятник совершает гармонические колебания.
График зависимости смещения от времени при гармонических колебаниях для случая ц0 = 0 представлен на рис. 10.2.
Наряду с круговой частотой щ0используют и другие характеристики колебательного движения:
• частота колебаний v, равная числу колебаний, совершаемых за единицу времени:
v=(10.6)
• период колебаний Т, равный времени, в течение которого совершается одно полное колебание:





Рис. 10.2. График зависимости смещения от времени при гармонических колебаниях

Связь между указанными характеристиками определяется формулами:

Закон движения (10.5) позволяет определить скорость и ускорение колеблющегося тела в любой момент времени:

где vmax = А?щ0 — максимальная скорость (амплитуда скорости);

где аmах = A•щ02— максимальное ускорение (амплитуда ускорения).
Колеблющаяся материальная точка в любой момент времени обладает кинетической энергией собственного движения — Ек и потенциальной энергией Eп, связанной с деформацией пружины.
Полная энергия колеблющегося тела складывается из его кинетической и потенциальной энергий:




Как видно из (10.12), в этом случае полная механическая энергия системы не изменяется.

Затухающие колебания

Учет сил трения и сопротивления в реальных системах существенно изменяет характер движения: энергия движения постоянно убывает и колебания либо становятся затухающими, либо колебательное движение вообще не возникает.
Если в рассматриваемой системе появляются силы сопротивления среды (силы трения), то второй закон Ньютона можно записать так:


Предполагают, что при не очень больших амплитудах и частотах сила сопротивления пропорциональна скорости движения и, естественно, направлена противоположно ей:

где r — коэффициент трения, характеризующий свойства среды оказывать сопротивление движению. Учитывая (10.13) и (10.14),


или

где
в-коэффициент затухания; щ0 - круговая частота собственных колебаний системы.
Решение полученного дифференциального уравнения зависит от знака разности щ2= щ02— в2, т. е. от соотношения между величинами в и щ0. Параметр есть круговая частота затухающих колебаний.
а) Если щ02— в2> 0 и круговая частота со является действительной величиной, то решение уравнения (10.15) имеет вид:

где щ = круговая частота затухающих колебаний. График таких колебаний представлен на рис. 10.3.

Рис. 10.3. График зависимости смещения от времени при затухающих колебаниях (ц0 -. 0)
В этом случае колебательный характер движения сохраняется, но амплитуда колебаний уменьшается со временем по экспоненциальному закону А = Б0?ехр(—в?t). Круговая частота колебаний становится меньше, чем при отсутствии силы трения. Период затухающих колебаний в этом случае возрастает и определяется формулой, показывающей зависимость от коэффициента трения:


Быстрота убывания амплитуды колебаний зависит от коэффициента затухания: чем больше р, тем сильнее тормозящее действие среды и тем быстрее уменьшается амплитуда.
Количественно степень затухания характеризуется безразмерной величиной — логарифмическим декрементом затухания л:

б) щ02< в2 (сильное затухание), то колебательное движение не возникает. Период колебаний становится мнимой величиной. В этом случае запас механической энергии тела к моменту его возвращения в положение равновесия полностью или почти полностью расходуется на преодоление сил трения и тело останавливается. Такое движение называется апериодическим.


10.2.Вынужденные колебания. Резонанс

В некоторых случаях колебания могут происходить под действием внешних сил.
Вынужденные колебания возникают в системе при участии внешней силы, изменяющейся по периодическому закону.
Рассмотрим случай, когда на тело помимо упругой силы F и силы трения Fтр действует еще и вынуждающая гармоническая сила fb= F0?соs(щв ?t), где F0— амплитуда силы; щв — круговая частота ее колебаний.
Запишем дифференциальное уравнение движения, вытекающее из второго закона Ньютона:

или

где

<< Предыдущая

стр. 9
(из 45 стр.)

ОГЛАВЛЕНИЕ

Следующая >>