<< Предыдущая

стр. 61
(из 65 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

.01 6.76 4.71 3.88 3.41 3.11 2.89 2.73 2.60 2.50 2.41 2.34 2.27
? .10 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.57 1.55
.05 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75
.01 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.25 2.18




342
Приложение 4 (e)
Распределение Фишера (продолжение)
?1 (число степеней свободы)
? ? ?2
15 20 24 30 40 50 60 100 120 200 500

1.66 1.61 1.57 1.54 1.51 1.48 1.47 1.43 1.42 1.41 1.39 1.38 .10 40
1.92 1.84 1.79 1.74 1.69 1.66 1.64 1.59 1.58 1.55 1.53 1.51 .05
2.52 2.37 2.29 2.20 2.11 2.06 2.02 1.94 1.92 1.87 1.83 1.80 .01
1.60 1.54 1.51 1.48 1.44 1.41 1.40 1.36 1.35 1.33 1.31 1.29 .10 60
1.84 1.75 1.70 1.65 1.59 1.56 1.53 1.48 1.47 1.44 1.41 1.39 .05
2.35 2.20 2.12 2.03 1.94 1.88 1.84 1.75 1.73 1.68 1.63 1.60 .01
1.58 1.52 1.49 1.45 1.41 1.38 1.36 1.31 1.31 1.29 1.27 1.25 .10 80
1.77 1.70 1.65 1.60 1.54 1.51 1.47 1.42 1.40 1.38 1.34 1.32 .05
2.24 2.11 2.03 1.94 1.84 1.78 1.76 1.65 1.63 1.57 1.52 1.49 .01
1.56 1.50 1.47 1.43 1.39 1.36 1.34 1.29 1.28 1.26 1.24 1.22 .10 100
1.75 1.68 1.63 1.57 1.51 1.48 1.45 1.39 1.38 1.34 1.30 1.28 .05
2.19 2.06 1.98 1.89 1.79 1.73 1.70 1.59 1.57 1.51 1.46 1.43 .01
1.55 1.48 1.45 1.41 1.37 1.34 1.32 1.27 1.26 1.24 1.21 1.19 .10 120
1.75 1.66 1.61 1.55 1.50 1.46 1.43 1.37 1.35 1.32 1.28 1.25 .05
2.19 2.03 1.95 1.86 1.76 1.70 1.66 1.56 1.53 1.48 1.42 1.38 .01
1.52 1.46 1.42 1.38 1.34 1.31 1.28 1.24 1.22 1.20 1.17 1.14 .10 200
1.72 1.62 1.57 1.52 1.46 1.41 1.39 1.32 1.29 1.26 1.22 1.19 .05
2.13 1.97 1.89 1.79 1.69 1.63 1.58 1.48 1.44 1.39 1.33 1.28 .01
?
1.49 1.42 1.38 1.34 1.30 1.26 1.24 1.18 1.17 1.13 1.08 1.00 .10
1.67 1.57 1.52 1.46 1.39 1.35 1.32 1.24 1.22 1.17 1.11 1.00 .05
2.04 1.88 1.79 1.70 1.59 1.52 1.47 1.36 1.32 1.25 1.15 1.00 .01




Приложение 5
Критерий Колмогорова
Критические значения ?? распределения Колмогорова: P( ? > ?? ) = ?

? 0.20 0.10 0.05 0.02 0.01 0.001

?? 1.073 1.224 1.358 1.520 1.627 1.950




343
Приложение 6(а)
Распределение Дарбина?Уотсона

Критические точки dl и du при уровне значимости ? = 0.05
(n – объем выборки, m – число объясняющих переменных в уравнении регрессии)


m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9
n
dl du dl du dl du dl du dl du dl du dl du dl du dl du

6 0.610 1.400
7 0.700 1.356 0.467 1.896
8 0.763 1.332 0.359 1.777 0.368 2.287
9 0.824 1.320 0.629 1.699 0.435 2.128 0.296 2.388
10 0.879 1.320 0.697 1.641 0.525 2.016 0.376 2.414 0.243 2.822
11 0.927 1.324 0.658 1.604 0.595 1.928 0.444 2.283 0.316 2.645 0.203 3.005
12 0.971 1.331 0.812 1.579 0.658 1.864 0.512 2.177 0.379 2.506 0.268 2.832 0.171 3.149
13 1.010 1.340 0.861 1.562 0.715 1.816 0.574 2.094 0.445 2.390 0.328 2.692 0.230 2.985 0.147 3266
14 1.045 1.330 0.905 1.551 0.767 1.779 0.632 2.030 0.505 2.296 0.389 2.572 0.286 2.848 0.200 3.111 0.127 3.360
15 1.077 1.361 0.946 1.543 0.814 1.750 0.685 1.977 0.562 2.220 0.447 2.472 0.343 2.727 0.251 2.979 0.175 3.216
16 1.106 1.371 0.982 1.539 0.857 1.728 0.734 1.935 0.615 2.157 0.502 2.388 0.398 2.624 0.304 2.860 0.222 3.090
17 1.133 1.381 1.015 1.536 0.897 1.710 0.779 1.900 0.664 2.104 0.554 2.318 0.451 1537 0.356 2.757 0.272 2.975
18 1.158 1.391 1.046 1.535 0.933 1.696 0.820 1.872 0.710 2.060 0.603 2.257 0.502 2.461 0.407 2.667 0.321 2.873
19 1.180 1.401 1.074 1.536 0.967 1.685 0.859 1.848 0.752 2.023 0.649 2.206 0.549 2.396 0.456 2.589 0.369 2.783
20 1.201 1.411 1.100 1.537 0.998 1.676 0.894 1.828 0.792 1.991 0.692 2.162 0.595 2.339 0.502 2.521 0.416 2.704
21 1.221 1.420 1.125 1.538 1.026 1.669 0.927 1.812 0.829 1.964 0.732 2.124 0.637 2.290 0.547 2.460 0.461 2.633
22 1.239 1.429 1.147 1.541 1.053 1.664 0.958 1.797 0.863 1.940 0.769 2.090 0.677 2.246 0.588 2.407 0.504 2.571
23 1.257 1.437 1.168 1.543 1.078 1.660 0.986 1.785 0.895 1.920 0.804 2.061 0.715 2.208 0.628 2.360 0.545 2.514
24 1.273 1.446 1.188 1.546 1.101 1.656 1.013 1.775 0.925 1.902 0.837 2.035 0.751 2.174 0.666 2.318 0.584 2.464
25 1.288 1.454 1.206 1.550 1.123 1.654 1.038 1.767 0.953 1.886 0.868 2.012 0.784 2.144 0.702 2.280 0.621 2.419
26 1.302 1.461 1.224 1.553 1.143 1.652 1.062 1.759 0.979 1.873 0.897 1.992 0.816 2.117 0.735 2.246 0.657 2.379
27 1.316 1.469 1.240 1.556 1.162 1.651 1.084 1.753 1.004 1.861 0.925 1.974 0.845 2.093 0.767 2.216 0.691 2.342
28 1.328 1.476 1.255 1.560 1.181 1.650 1.104 1.747 1.028 1.850 0.951 1.958 0.874 2.071 0.798 2.188 0.723 2.309
29 1.341 1.483 1.270 1.563 1.198 1.650 1.124 1.743 1.050 1.841 0.975 1.944 0.900 2.052 0.826 2.164 0.753 2.278
30 1.352 1.489 1.284 1.567 1.214 1.650 1.143 1.739 1.071 1.833 0.998 1.931 0.926 2.034 0.854 2.141 0.782 2.251
31 1.363 1.496 1.297 1.570 1.229 1.650 1.160 1.735 1.090 1.825 1.020 1.920 0.950 2.018 0.879 2.120 0.810 2.226
32 1.373 1.502 1.309 1.574 1.244 1.650 1.177 1.732 1.109 1.819 1.041 1.909 0.972 2.004 0.904 2.102 0.836 2.203
33 1.383 1.508 1.321 1.577 1.258 1.651 1.193 1.730 1.127 1.813 1.061 1.900 0.994 1.991 0.927 2.085 0.861 2.181
34 1.393 1.514 1.333 1.580 1.271 1.652 1.208 1.728 1.144 1.808 1.080 1.891 1.015 1.979 0.950 2.069 0.885 2.162
35 1.402 1.519 1.343 1.584 1.283 1.653 1.222 1.726 1.160 1.803 1.097 1.884 1.034 1.967 0.971 2.054 0.908 2.144
36 1.411 1.525 1.354 1.587 1.295 1.654 1.236 1.724 1.175 1.799 1.114 1.877 1.053 1.957 0.991 2.041 0.930 2127
37 1.419 1.530 1.364 1.590 1.307 1.655 1.249 1.723 1.190 1.795 1.131 1.870 1.071 1.948 1.011 2.029 0.951 2.112
38 1.427 1.535 1.373 1.594 1.318 1.656 1.261 1.722 1.204 1.792 1.146 1.864 1.088 1.939 1.029 2.017 0.970 2.098
39 1.435 1.540 1.382 1.597 1.328 1.658 1.273 1.722 1.218 1.789 1.161 1.859 1.104 1.932 1.047 2.007 0.990 2.085
40 1.442 1.544 1.391 1.600 1.338 1.659 1.285 1.721 1.230 1.786 1.175 1.854 1.120 1.924 1.064 1.997 1.008 2.072
45 1.475 1.566 1.430 1.615 1.383 1.666 1.336 1.720 1.287 1.776 1.238 1.835 1.189 1.895 1.139 1.958 1.089 2.022
50 1.503 1.585 1.462 1.628 1.421 1.674 1.378 1.721 1.335 1.771 1.291 1.822 1.246 1.875 1.201 1.930 1.156 1.986
55 1.528 1.601 1.490 1.641 1.452 1.681 1.414 1.724 1.374 1.768 1.334 1.814 1.294 1.861 1.253 1.909 1.212 1.959
60 1.549 1.616 1.514 1.652 1.480 1.689 1.444 1.727 1.408 1.767 1.372 1.808 1.335 1.850 1.298 1.894 1.260 1.939
65 1.567 1.629 1.536 1.662 1.503 1.696 1.471 1.731 1.438 1.767 1.404 1.805 1.370 1.843 1.336 1.882 1.301 1.923
70 1.583 1.641 1.554 1.672 1.525 1.703 1.494 1.735 1.464 1.768 1.433 1.802 1.401 1.837 1.369 1.873 1.337 1.910
75 1.598 1.65 1.571 1.680 1.543 1.709 1.515 1.739 1.487 1.770 1.458 1.801 1.428 1.834 1.399 1.867 1.369 1.901
80 1.611 1.662 1.586 1.688 1.560 1.715 1.534 1.743 1.507 1.772 1.480 1.801 1.453 1.831 1.425 1.861 1.397 1.893
85 1.624 1.671 1.600 1.696 1.575 1.721 1.550 1.747 1.525 1.774 1.500 1.801 1.474 1.829 1.448 1.857 1.422 1.886
90 1.635 1.679 1.612 1.703 1.589 1.726 1.566 1.751 1.542 1.776 1.518 1.801 1.494 1.827 1.469 1.854 1.445 1.881
95 1.645 1.687 1.623 1.709 1.602 1.732 1.579 1.755 1.557 1.778 1.535 1.802 1.512 1.827 1.489 1.852 1.465 1.877
100 1.654 1.694 1.634 1.715 1.613 1.736 1.592 1.758 1.571 1.780 1.550 1.803 1.528 1.826 1.506 1.850 1.484 1.874
150 1.720 1.746 1.706 1.760 1.693 1.774 1.679 1.788 1.665 1.802 1.651 1.817 1.637 1.832 1.622 1.847 1.608 1.862


344
200 1.758 1.778 1.748 1.789 1.738 1.799 1.728 1.810 1.718 1.820 1.707 1.831 1.697 1.841 1.686 1.852 1.675 1.863

Приложение 6(б)
Распределение Дарбина?Уотсона

Критические точки dl и du при уровне значимости ? = 0.01
(n – объем выборки, m – число объясняющих переменных в уравнении регрессии)


m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9
n
dl du dl du dl du dl du dl du dl du dl du dl du dl du
6 0.390 1.142
7 0.433 1.036 0.294 1.676
8 0.497 1.003 0.343 1.489 0.229 2.102
9 0.554 0.998 0.408 1.389 0.279 1.873 0.183 2.433
10 0.604 1.001 0.466 1.333 0.340 1.733 0.230 2.193 0.130 2.690
11 0.633 1.010 0.319 1.297 0.396 1.640 0.286 2.030 0.193 2.433 0.124 2.892
12 0.697 1.023 0.369 1.274 0.449 1.373 0.339 1.913 0.244 2.280 0.164 2.663 0.103 3.033
13 0.738 1.038 0.616 1.261 0.499 1.326 0.391 1.826 0.294 2.130 0.211 2.490 0.140 2.838 0.090 3.182
14 0.776 1.034 0.660 1.234 0.347 1.490 0.441 1.737 0.343 2.049 0.237 2.334 0.183 2.667 0.122 2.981 0.078 3.287
15 0.811 1.070 0.700 1.232 0.391 1.464 0.488 1.704 0.391 1.967 0.303 2.244 0.226 2.330 0.161 2.817 0.107 3.101
16 0.844 1.086 0.737 1.232 0.633 1.446 0.332 1.663 0.437 1.900 0.349 2.133 0.269 2.416 0.200 2.681 0.142 2.944
17 0.874 1.102 0.772 1.233 0.672 1.432 0.374 1.630 0.480 1.847 0.393 2.078 0.313 2.319 0.241 2.366 0.179 2.811
18 0.902 1.118 0.803 1.239 0.708 1.422 0.613 1.604 0.322 1.803 0.433 2.013 0.333 2.238 0.282 2.467 0.216 2.697
19 0.928 1.132 0.833 1.263 0.742 1.413 0.630 1.384 0.361 1.767 0.476 1.963 0.396 2.169 0.322 2.381 0.233 2.397
20 0.932 1.147 0.863 1.271 0.773 1.411 0.683 1.367 0.398 1.737 0.313 1.918 0.436 2.110 0.362 2.308 0.294 2.310
21 0.973 1.161 0.890 1.277 0.803 1.408 0.718 1.334 0.633 1.712 0.332 1.881 0.474 2.039 0.400 2.244 0.331 2.434
22 0.997 1.174 0.914 1.284 0.831 1.407 0.748 1.343 0.667 1.691 0.387 1.849 0.310 2.013 0.437 2.188 0.368 2.367
23 1.018 1.187 0.938 1.291 0.838 1.407 0.777 1.334 0.698 1.673 0.620 1.821 0.343 1.977 0.473 2.140 0.404 2.308
24 1.037 1.199 0.960 1.298 0.882 1.407 0.803 1.328 0.728 1.638 0.632 1.797 0.378 1.944 0.307 2.097 0.439 2.233
25 1.033 1.211 0.981 1.303 0.906 1.409 0.831 1.323 0.736 1.643 0.682 1.776 0.610 1.913 0.340 2.039 0.473 2.209
26 1.072 1.222 1.001 1.312 0.928 1.411 0.833 1.318 0.783 1.633 0.711 1.739 0.640 1.889 0.372 2.026 0.303 2.168
27 1.089 1.233 1.019 1.319 0.949 1.413 0.878 1.313 0.808 1.626 0.738 1.743 0.669 1.867 0.602 1.997 0.336 2.131
28 1.104 1.244 1.037 1.323 0.969 1.413 0.900 1.313 0.832 1.618 0.764 1.729 0.696 1.847 0.630 1.970 0.366 2.098
29 1.119 1.234 1.034 1.332 0.988 1.418 0.921 1.312 0.833 1.611 0.788 1.718 0.723 1.830 0.638 1.947 0.393 2.068
30 1.133 1.263 1.070 1.339 1.006 1.421 0.941 1.311 0.877 1.606 0.812 1.707 0.748 1.814 0.684 1.923 0.622 2.041
31 1.147 1.273 1.083 1.343 1.023 1.423 0.960 1.310 0.897 1.601 0.834 1.698 0.772 1.800 0.710 1.906 0.649 2.017
32 1.160 1.282 1.100 1.332 1.040 1.428 0.979 1.310 0.917 1.397 0.836 1.690 0.794 1.788 0.734 1.889 0.674 1.993
33 1.172 1.291 1.114 1.338 1.033 1.432 0.996 1.310 0.936 1.394 0.876 1.683 0.816 1.776 0.737 1.874 0.698 1.973
34 1.184 1.299 1.128 1.364 1.070 1.433 1.012 1.311 0.934 1.391 0.896 1.677 0.837 1.766 0.779 1.860 0.722 1.937
35 1.193 1.307 1.140 1.370 1.083 1.439 1.028 1.312 0.971 1.389 0.914 1.671 0.837 1.737 0.800 1.847 0.744 1.940
36 1.206 1.313 1.133 1.376 1.098 1.442 1.043 1.313 0.988 1.388 0.932 1.666 0.877 1.749 0.821 1.836 0.766 1.923
37 1.217 1.323 1.163 1.382 1.112 1.446 1.038 1.314 1.004 1.386 0.930 1.662 0.893 1.742 0.841 1.823 0.787 1.911
38 1.227 1.330 1.176 1.388 1.124 1.449 1.072 1.313 1.019 1.383 0.966 1.638 0.913 1.733 0.860 1.816 0.807 1.899
39 1.237 1.337 1.187 1.393 1.137 1.433 1.083 1.317 1.034 1.384 0.982 1.633 0.930 1.729 0.878 1.807 0.826 1.887
40 1.246 1.344 1.198 1.398 1.148 1.437 1.098 1.318 1.048 1.384 0.997 1.632 0.946 1.724 0.893 1.799 0.844 1.876
45 1.288 1.376 1.243 1.423 1.201 1.474 1.136 1.328 1.111 1.384 1.063 1.643 1.019 1.704 0.974 1.768 0.927 1.834
50 1.324 1.403 1.283 1.446 1.243 1.491 1.203 1.338 1.164 1.387 1.123 1.639 1.081 1.692 1.039 1.748 0.997 1.803
55 1.336 1.427 1.320 1.466 1.284 1.306 1.247 1.348 1.209 1.392 1.172 1.638 1.134 1.683 1.093 1.734 1.037 1.783
60 1.383 1.449 1.330 1.484 1.317 1.320 1.283 1.338 1.249 1.398 1.214 1.639 1.179 1.682 1.144 1.726 1.108 1.771
65 1.407 1.468 1.377 1.300 1.346 1.334 1.313 1.368 1.283 1.604 1.231 1.642 1.218 1.680 1.186 1.720 1.133 1.761
70 1.429 1.483 1.400 1.313 1.372 1.346 1.343 1.378 1.313 1.611 1.283 1.643 1.233 1.680 1.223 1.716 1.192 1.734
75 1.448 1.301 1.422 1.329 1.393 1.337 1.368 1.387 1.340 1.617 1.313 1.649 1.284 1.682 1.236 1.714 1.227 1.748
80 1.466 1.313 1.441 1.341 1.416 1.368 1.390 1.393 1.364 1.624 1.338 1.633 1.312 1.683 1.283 1.714 1.239 1.743
85 1.482 1.328 1.438 1.333 1.433 1.378 1.411 1.603 1.386 1.630 1.362 1.637 1.337 1.683 1.312 1.714 1.287 1.743
90 1.496 1.340 1.474 1.363 1.432 1.387 1.429 1.611 1.406 1.636 1.383 1.661 1.360 1.687 1.336 1.714 1.312 1.741
95 1.310 1.332 1.489 1.373 1.468 1.396 1.446 1.618 1.423 1.642 1.403 1.666 1.381 1.690 1.338 1.713 1.336 1.741
100 1.322 1.362 1.303 1.383 1.482 1.604 1.462 1.623 1.441 1.647 1.421 1.670 1.400 1.693 1.378 1.717 1.337 1.741
150 1.611 1.637 1.398 1.631 1.384 1.663 1.371 1.679 1.337 1.693 1.343 1.708 1.330 1.722 1.313 1.737 1.301 1.732
200 1.664 1.684 1.633 1.693 1.643 1.704 1.633 1.713 1.623 1.723 1.613 1.733 1.603 1.746 1.392 1.737 1.382 1.768


345
Приложение 7
Критические значения количества рядов для определения
наличия автокорреляции по методу рядов (? = 0.05)


Нижняя граница K1
N2
N1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
2 2 2 2 2 2 2 2 2 2
3 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3
4 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4
5 2 2 3 3 3 3 3 4 4 4 4 4 4 4 5 5 5
6 2 2 3 3 3 3 4 4 4 4 5 5 5 5 5 5 6 6
7 2 2 3 3 3 4 4 5 5 5 5 5 6 6 6 6 6 6
8 2 3 3 3 4 4 5 5 5 6 6 6 6 6 7 7 7 7
9 2 3 3 4 4 5 5 5 6 6 6 7 7 7 7 8 8 8
10 2 3 3 4 5 5 5 6 6 7 7 7 7 8 8 8 8 9
11 2 3 4 4 5 5 6 6 7 7 7 8 8 8 9 9 9 9
12 2 2 3 4 4 5 6 6 7 7 7 8 8 8 9 9 9 10 10
13 2 2 3 4 5 5 6 6 7 7 8 8 9 9 9 10 10 10 10
14 2 2 3 4 5 5 6 6 7 7 8 8 9 9 10 10 10 11 11
15 2 3 3 4 5 6 6 7 7 8 8 9 9 10 10 11 11 11 12
16 2 3 4 4 5 6 6 7 8 8 9 9 10 10 11 11 11 12 12
17 2 3 4 4 5 6 7 7 8 9 9 10 10 11 11 11 12 12 13
18 2 3 4 5 5 6 7 8 8 9 9 10 10 11 11 12 12 13 13
19 2 3 4 5 6 6 7 8 8 9 10 10 11 11 12 12 13 13 13
20 2 3 4 5 6 6 7 8 9 9 10 10 11 12 12 13 13 13 14

Верхняя граница K2
N2
N1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
4 9 9
5 9 10 10 11 11
6 9 10 11 12 12 13 13 13 13
7 11 12 13 13 14 14 14 14 15 15 15
8 11 12 13 14 14 15 15 16 16 16 16 17 17 17 17 17
9 13 14 14 15 16 16 16 17 17 18 18 18 18 18 18
10 13 14 15 16 16 17 17 18 18 18 19 19 19 20 20
11 13 14 15 16 17 17 18 19 19 19 20 20 20 21 21
12 13 14 16 16 17 18 19 19 20 20 21 21 21 22 22
13 15 16 17 18 19 19 20 20 21 21 22 22 23 23
14 15 16 17 18 19 20 20 21 22 22 23 23 23 24
15 15 16 18 18 19 20 21 22 22 23 23 24 24 25
16 17 18 19 20 21 21 22 23 23 24 25 25 25
17 17 18 19 20 21 22 23 23 24 25 25 26 26
18 17 18 19 20 21 22 23 24 25 25 26 26 27
19 17 18 20 21 22 23 23 24 25 26 26 27 27
20 17 18 20 21 22 23 24 25 25 26 27 27 28

Пример: пусть при n = 20 будет 11 знаков “+” (= N1) и 9 знаков “?” (= N2). Тогда при
? = 0.05 нижняя граница K1 = 6, верхняя граница K2 = 16. Если Кнабл. ? 6 или Кнабл. ? 16, то
гипотеза об отсутствии автокорреляции должна быть отклонена.


346
Приложение 6(а)
Распределение Дарбина?Уотсона

Критические точки dl и du при уровне значимости ? = 0.05
(n – объем выборки, m – число объясняющих переменных в уравнении регрессии)


m=1 m=2 m=3 m=4 m=5 m=6 m=7 m=8 m=9
n
d1 du d1 du d1 du d1 du d1 du d1 du d1 du d1 du d1 du
6 0.610 1.400
7 0.700 1.356 0.467 1.896
8 0.763 1.332 0.359 1.777 0.368 2.287
9 0.824 1.320 0.629 1.699 0.435 2.128 0.296 2.388
10 0.879 1.320 0.697 1.641 0.525 2.016 0.376 2.414 0.243 2.822
11 0.927 1.324 0.658 1.604 0.595 1.928 0.444 2.283 0.316 2.645 0.203 3.005
12 0.971 1.331 0.812 1.579 0.658 1.864 0.512 2.177 0.379 2.506 0.268 2.832 0.171 3.149
13 1.010 1.340 0.861 1.562 0.715 1.816 0.574 2.094 0.445 2.390 0.328 2.692 0.230 2.985 0.147 3266
344




14 1.045 1.330 0.905 1.551 0.767 1.779 0.632 2.030 0.505 2.296 0.389 2.572 0.286 2.848 0.200 3.111 0.127 3.360
15 1.077 1.361 0.946 1.543 0.814 1.750 0.685 1.977 0.562 2.220 0.447 2.472 0.343 2.727 0.251 2.979 0.175 3.216
16 1.106 1.371 0.982 1.539 0.857 1.728 0.734 1.935 0.615 2.157 0.502 2.388 0.398 2.624 0.304 2.860 0.222 3.090
17 1.133 1.381 1.015 1.536 0.897 1.710 0.779 1.900 0.664 2.104 0.554 2.318 0.451 2.537 0.356 2.757 0.272 2.975
18 1.158 1.391 1.046 1.535 0.933 1.696 0.820 1.872 0.710 2.060 0.603 2.257 0.502 2.461 0.407 2.667 0.321 2.873
19 1.180 1.401 1.074 1.536 0.967 1.685 0.859 1.848 0.752 2.023 0.649 2.206 0.549 2.396 0.456 2.589 0.369 2.783
20 1.201 1.411 1.100 1.537 0.998 1.676 0.894 1.828 0.792 1.991 0.692 2.162 0.595 2.339 0.502 2.521 0.416 2.704
21 1.221 1.420 1.125 1.538 1.026 1.669 0.927 1.812 0.829 1.964 0.732 2.124 0.637 2.290 0.547 2.460 0.461 2.633
22 1.239 1.429 1.147 1.541 1.053 1.664 0.958 1.797 0.863 1.940 0.769 2.090 0.677 2.246 0.588 2.407 0.504 2.571
23 1.257 1.437 1.168 1.543 1.078 1.660 0.986 1.785 0.895 1.920 0.804 2.061 0.715 2.208 0.628 2.360 0.545 2.514
24 1.273 1.446 1.188 1.546 1.101 1.656 1.013 1.775 0.925 1.902 0.837 2.035 0.751 2.174 0.666 2.318 0.584 2.464
25 1.288 1.454 1.206 1.550 1.123 1.654 1.038 1.767 0.953 1.886 0.868 2.012 0.784 2.144 0.702 2.280 0.621 2.419
26 1.302 1.461 1.224 1.553 1.143 1.652 1.062 1.759 0.979 1.873 0.897 1.992 0.816 2.117 0.735 2.246 0.657 2.379

<< Предыдущая

стр. 61
(из 65 стр.)

ОГЛАВЛЕНИЕ

Следующая >>