<< Предыдущая

стр. 4
(из 18 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

(множества P(?)
рассматриваться равновесие в доминантных стратегий Ed(?) (если
оно существует), равновесие Нэша EN(?) или какая-либо другая
некооперативная (и оговариваемая в каждом конкретном случае)
теоретико-игровая концепция равновесия. По умолчанию под
равновесием (множеством реализуемых действий) ниже мы будем
подразумевать равновесие Нэша (точнее - множество равновесных
по Нэшу при заданной системе стимулирования векторов стратегий
АЭ).
Как и в одноэлементной АС, эффективностью (гарантированной
эффективностью) стимулирования является максимальное
(минимальное) значение целевой функции центра на множестве
решений игры: K(?) = max ?(y,?), а задача синтеза оптимальной
y ?P( ? )
функции стимулирования заключается в поиске допустимой
системы стимулирования ?*?M, имеющей максимальную
эффективность ?* = arg max K(?).
? ?M
И в одноэлементных, и в многоэлементных АС задача синтеза
оптимальной системы стимулирования фактически сводится либо к
анализу множеств реализуемых действий, либо (и) к анализу
минимальных затрат на стимулирование В
[195, 382].
одноэлементной активной системе множеством решений игры
(реализуемых действий) является множество действий активного
элемента, доставляющих максимум его целевой функции. В
многоэлементной АС активные элементы вовлечены в игру -
выигрыш каждого АЭ в общем случае зависит как от его
собственных действий, так и от действий других активных
23
элементов (еще раз напомним, что в настоящей работе допускается
лишь некооперативное взаимодействие участников системы).
Поэтому основное качественное отличие задач стимулирования в
многоэлементных системах по сравнению с одноэлементными
(помимо простого увеличения числа участников системы и
соответствующего ему "линейного" по их числу росту сложности
задачи) заключается в том, что в многоэлементных системах
множество решений игры может иметь достаточно сложную
структуру. В том числе, например, одной системой стимулирования
могут реализовываться несколько Парето эффективных (с точки
зрения АЭ) векторов действий и т.д.
Другими словами, отсутствие на сегодняшний день
относительно полных (если принять за "идеал" совокупность
результатов исследования одноэлементных задач) аналитических
методов решения многоэлементных задач стимулирования, помимо
высокой их структурной и вычислительной сложности, отчасти
объясняется отсутствием единой концепции решения игры в теории
игр - в зависимости от информированности игроков (участников
АС), гипотез об их поведении и т.д. может изменяться
эффективность тех или иных управлений.
Так как целевая функция АЭ определяется разностью
стимулирования и затрат, то, классифицируя задачи стимулирования
в многоэлементных АС, необходимо учитывать возможные свойства
и ограничения на функции стимулирования и затрат. Для описания
конкретной теоретико-игровой модели стимулирования
предлагается использовать значения признаков классификации по
следующим основаниям9, приводимым в следующем порядке -
первичное основание, вторичное и т.д.:
1. Переменные, от которых зависит функция стимулирования
(индивидуальное вознаграждение АЭ). По данному основанию
возможны следующие значения признаков:
- индивидуальное вознаграждение конкретного АЭ явным
образом зависит только от его собственных действий. При этом
возможны следующие варианты:

9
Основанием классификации оснований вводимой системы классификаций
служит набор параметров, который однозначно описывает большинство
моделей многоэлементных АС.
24
- отсутствуют общие ограничения на индивидуальные
стимулирования АЭ;
- присутствуют общие ограничения на стимулирование.
- индивидуальное вознаграждение конкретного АЭ явным
образом зависит только от вектора действий всех АЭ.
- индивидуальное вознаграждение конкретного АЭ явным
образом зависит только от результата деятельности АС.
смешанная зависимость, когда индивидуальное
-
вознаграждение конкретного АЭ явным образом зависит и от
результата деятельности АС и от вектора действий всех АЭ
(например, аддитивно).
2. Свойства функций затрат АЭ. Ограничимся пока
рассмотрением двух случаев - сепарабельных и несепарабельных
затрат. Сепарабельными называются такой набор функций
индивидуальных затрат АЭ, в котором затраты каждого АЭ зависят
только от его собственных действий: ? yi ? Ai ? y-i ? A-i ci(y) = ci(yi),
где y-i = (y1, y2, , yi-1, yi+1, , yn) - обстановка для i-го АЭ, A-i = ? Aj.
j?i
Несепарабельными называются индивидуальные затраты АЭ,
зависящие от его собственных действий и действий других игроков.
3. Унифицированность системы стимулирования. В первом
приближении ограничимся персонифицированными и
унифицированными системами стимулирования. В первом случае
функции стимулирования различных АЭ различны (общий случай
"обычных" систем стимулирования, оперируя с которыми мы будем
опускать прилагательное "персонифицированная"). Во втором
случае функция стимулирования одинакова для всех АЭ, но может
для различных АЭ зависеть от различных параметров (например, их
индивидуальных действий и т.д.). Унифицированные системы
стимулирования описаны в [363].
Комбинируя четыре значения признаков по первому основанию
классификации и два по второму, получаем следующие восемь (не
учитывающих унифицированность) основных классов моделей
стимулирования в многоэлементных АС.
1. Индивидуальное вознаграждение конкретного АЭ явным
образом зависит только от его собственных действий, затраты
сепарабельны. Возможные следующие варианты. Первый - общие

25
ограничения на индивидуальные стимулирования АЭ отсутствуют -
получаем набор несвязанных одноэлементных задач
стимулирования (см. выше). Второй вариант - присутствуют общие
ограничения на систему стимулирования в АС - получаем АС со
слабо связанными активными элементами, решение задачи
стимулирования в которой распадается на решение набора
параметрических одноэлементных задач и последующим поиском
оптимального значения параметра (например, плана и т.д.) в
результате решения соответствующей стандартной задачи условной
оптимизации [195, 233, 237, 382].
2. Индивидуальное вознаграждение конкретного АЭ явным
образом зависит только от его собственных действий, затраты
несепарабельны. Общие результаты для этого класса задач
стимулирования отсутствуют – см. обзоры [141, 152, 371].
3. Индивидуальное вознаграждение конкретного АЭ явным
образом зависит только от вектора действий всех АЭ, затраты
сепарабельны. Подклассом являются ранговые системы
стимулирования, при использовании которых индивидуальное
вознаграждение АЭ зависит либо от принадлежности его действия
заранее заданному элементу разбиения множества A - так
называемые нормативные ранговые системы стимулирования, либо
от места, занятого конкретным АЭ в упорядочении действий всех
АЭ - так называемые соревновательные ранговые системы
стимулирования [84, 195, 293, 392, 396, 397, 410, 412, 420].
Для этого класса задач стимулирования в многоэлементных АС
можно показать, что в случае сепарабельных затрат для любой
системы стимулирования из некоторого класса, зависящей от
вектора действий всех АЭ, в том же классе найдется система
стимулирования, зависящая для каждого АЭ только от его
индивидуальных действий, и реализующая тот же вектор действий,
что и исходная система стимулирования [410, 415].
4. Индивидуальное вознаграждение конкретного АЭ явным
образом зависит только от вектора действий всех АЭ, затраты
несепарабельны. Общие результаты для этого класса задач
стимулирования отсутствуют – см. обзоры [141, 152, 371].
5, 6. Индивидуальное вознаграждение конкретного АЭ явным
образом зависит только от результата деятельности АС, затраты
сепарабельны или несепарабельны. Эти классы моделей называются
26
моделями коллективного стимулирования. Немногочисленные
результаты их изучения приведены в [156, 294, 296, 363, 429].
7, 8. Индивидуальное вознаграждение конкретного АЭ явным
образом зависит и от вектора действий всех АЭ, и от результата
деятельности АС (смешанная зависимость), затраты сепарабельны
или несепарабельны. Общие результаты для этого класса задач
стимулирования отсутствуют – см. обзоры [141, 152, 371].

5. Механизмы планирования в активных системах

Рассмотрим двухуровневую многоэлементную активную
систему, структура которой приведена на рисунке 1 (см. выше).
Стратегией каждого из активных элементов является сообщение
центру некоторой информации si ? ?i, i ? I. Центр на основании
сообщенной ему информации назначает АЭ планы xi = ?i(s), где ?i -
процедура (механизм) планирования, s? ?' = ? ? i - вектор
i
сообщений всех АЭ. Функция предпочтения АЭ, отражающая
интересы АЭ в задачах планирования: ?i(xi,ri): ?2 > ?1 является
сепарабельной, то есть зависит от соответствующей компоненты
назначенного центром плана и некоторого параметра (связь между
функциями предпочтения и целевыми функциями описана в [195,
375, 376, 382]). Условно, между задачами планирования и
стимулирования можно провести следующую аналогию (см. таблицу
ниже).
Стимулирование Планирование
y ? A’ s ? ?’
Стратегия АЭ
Управление u ? ?(y) ?(s)
U
?(s,?)
Предпочтения f(y,?)
АЭ
На момент принятия решений каждому АЭ известны:
процедура планирования, значение его собственного параметра ri ?
?1 (идеальной точки, точки пика), целевые функции и допустимые
множества всех АЭ. Центру известны зависимости ?i(xi,.) и

27
множества возможных сообщений АЭ и неизвестны точные
значения идеальных точек. Последовательность функционирования
следующая: центр выбирает процедуру планирования и сообщает ее
АЭ, активные элементы при известной процедуре планирования
сообщают центру информацию, на основании которой и
формируются планы.
Так как решение, принимаемое центром (назначаемые им
планы), зависит от сообщаемой элементами информации, последние
могут воспользоваться возможностью своего влияния на эти
решения, сообщая такую информацию, чтобы получить наиболее
выгодные для себя планы. Понятно, что при этом полученная
центром информация в общем случае может не быть истинной.
Следовательно, возникает проблема манипулирования.
Как правило, при исследовании механизмов планирования, то
есть АС с сообщением информации, вводится предположение, что
функции предпочтения АЭ однопиковые с точками пика {ri}, то есть
функции предпочтения непрерывны, строго монотонно возрастают
до единственной точки максимума ri и строго монотонно убывают
после нее. Это предположение означает, что предпочтения АЭ на
множестве допустимых планов таковы, что существует
единственное наилучшее для него значение плана - точка пика,
степень же предпочтительности остальных планов монотонно
убывает по мере удаления от идеальной точки.
Будем считать, что АЭ ведут себя некооперативно, выбирая
доминантные или равновесные по Нэшу стратегии. Пусть s* - вектор
равновесных стратегий. Очевидно s* = s*(r), где r - вектор точек
пика.
Соответствующим механизму ?(.): ?' > ?N прямым
механизмом планирования h(.): ? n > ? n называется механизм
h(r)=?(s*(r)), ставящий в соответствие вектору точек пика активных
элементов вектор планов. Если в соответствующем прямом
механизме сообщение достоверной информации является
равновесной стратегией, то такой механизм называется
эквивалентным прямым (неманипулируемым) механизмом.
Рассмотрим возможные способы обеспечения достоверности
сообщаемой информации. Наиболее очевидной является идея
введения системы штрафов за искажение информации (в

28
предположении, что центру в конце концов становятся известными
истинные значения параметров {ri}). В [195] показано, что введением
"достаточно сильных" штрафов действительно можно обеспечить
достоверность сообщаемых оценок. Если отказаться от
предположения, что центру становятся известными {ri}, то возникает
задача идентификации неизвестных параметров по имеющейся у
центра информации и, следовательно, задача построения системы
штрафов за косвенные показатели искажения информации [195].
Другим возможным способом обеспечения достоверности
сообщаемой информации является использование прогрессивных
механизмов, т.е. таких механизмов, в которых функция ?i монотонна
по оценке si, i ? I. Понятно, что если при этом справедлива "гипотеза
реальных оценок": si ? ri , что достаточно распространено на
практике, то доминантной стратегией каждого элемента будет
сообщение si = ri [195].
Фундаментальным результатом теории активных систем
является принцип открытого управления [84, 169, 215]. Основная
идея принципа открытого управления (ОУ) заключается в том,
чтобы использовать процедуру планирования, максимизирующую
целевую функцию каждого АЭ, в предположении, что сообщаемая
элементами оценка достоверна, т.е. центр идет навстречу АЭ,
рассчитывая на то, что и они его не "обманут" [84, 87, 109, 123, 130,
131, 133, 137, 153]. Это объясняет другое название механизма
открытого управления - механизм честной игры. Дадим строгое
определение.
Условие: ?i(?i(s),si) = max ?i(xi,si), i ? I, s ? ?', где Xi(s-i) -
x i ?X i ( s ? i )
устанавливаемое центром множество допустимых планов при
заданном s, а s-i = (s1, s2, si-1, si+1, , sn ) - обстановка, называется
условием совершенного согласования. Процедура планирования,
максимизирующая целевую функцию центра ?(?,s) на множестве
планов, удовлетворяющих условиям совершенного согласования,
называется законом открытого управления.
Имеет место следующий факт - для того, чтобы сообщение
достоверной информации было доминантной стратегией АЭ
необходимо и достаточно, чтобы механизм планирования был
механизмом открытого управления [84, 123, 195].

29
Приведенное утверждение не гарантирует единственности
ситуации равновесия. Конечно, если выполнено условие
благожелательности (если si = ri, i ? I - доминантная стратегия, то
элементы будут сообщать достоверную информацию), то

<< Предыдущая

стр. 4
(из 18 стр.)

ОГЛАВЛЕНИЕ

Следующая >>