<< Предыдущая

стр. 140
(из 165 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

ника. При этом предположении естественно считать, что контракт — это функция только от
усилий, но не от y : w = w(x).
?
Наниматель имеет право претендовать на весь доход (за вычетом оплаты по контракту).
Поэтому при данном уровне усилий x нейтральный к риску наниматель максимизирует ожи-
даемую прибыль
Ex (?(x) ? w(x)) = y(x) ? w(x),
y
где w(x) — оплата уровня усилий x работника.
Пусть задано распределение вероятностей для типов работников. Например, в дискретном
случае, описанном выше, оно определяется указанием вероятности µ? для работника каждого
типа ? . Если работник типа ? осуществляет усилия x? , то с точки зрения нанимателя уси-
лия — это случайная величина. (В дискретном случае — это дискретная случайная величина,
принимающая значение x? с вероятностью µ? .) Таким образом, выигрыш нанимателя равен
следующей величине:
E? [Ex? (?(x? ) ? w(x? ))]
y
или, учитывая предположение независимости функции распределения дохода от типа работ-
ника,
E? [y(x? ) ? w(x? )].
Предполагаем, что функция полезности работника любого типа сепарабельна по деньгам и
усилиям:
u? (x, w) = v? (w) ? c? (x),
где, как и выше, v? (w) — полезность оплаты w , а c? (x) — тягость усилий x для работника
типа ? . Мы будем предполагать, что v? (w) — возрастающая вогнутая функция, а c? (x) —
возрастающая выпуклая функция.
Разные типы работников характеризуются разной формой функций v? (w) и c? (x). Каждый
тип работников характеризуется уровнем резервной полезности u0? , заданной экзогенно.
Модель найма со скрытой информацией можно представить как динамическую игру с
неполной информацией. Последовательность ходов в этой игре следующая:

0. «Природа» выбирает тип работника.

1. Наниматель, не зная типа, предлагает контракт w(·).

2. Работник (зная свой тип) решает, подписывать контракт или нет.

3. Если работник подписывает контракт, то он (зная свой тип) выбирает уровень усилий x.

4. «Природа» при данном x по распределению Fx случайным образом «генерирует» y (x).
?

Будем анализировать эту игру, используя обратную индукцию.
Уровень усилий x? , выбираемый работником типа ? , является решением задачи
?

v? (w(x)) ? c? (x) > max .
x?X
15.3. Модель найма со скрытой информацией 596

Природа
???

Наниматель w(·)
Работник

0
x?
u0
[Fx ] Природа
y
?
y (x? )?w(x? )
?
v? (w(x? ))?c? (x? )
Рис. 15.19. Представление модели найма со скрытой информацией в виде дерева


v(w(x))


c2 (x)
c1 (x)


x
x? x?
2 1



Рис. 15.20. Выбор оптимальных действий работниками двух разных типов


В дальнейшем мы будем предполагать, что наниматель может выбирать только такие контрак-
ты, для которых эта задача имеет решение.
Далее работник типа ? сравнивает значение этой задачи — уровень полезности, которую
ему обеспечивает данный контракт, своей резервной полезностью и решает, подписывать ли
ему контракт. Работник подписывает контракт, если

max v? (w(x)) ? c? (x) u0? .
x?X

Предположим10 , что v? (w) = w .
Это условие позволяют записать задачу работника в более простом виде:

w(x) ? c? (x) > max,
x?X

где c? (x) теперь обозначает величину c? (x) + u0? .
Поскольку ожидаемый доход y(x) — монотонная функция усилий, то можно измерять уро-
вень усилий непосредственно величиной ожидаемого дохода. Таким образом, без ограничения
общности будем считать, что уровень усилий измеряется величиной ожидаемого дохода, т. е.
y(x) = x.
Обозначим через I???? (·) индикаторную функцию, которая принимает значение 1, если
условие в скобках выполнено, и 0 в противном случае.
10
Анализ в общем случае мы предлагаем читателю проделать самостоятельно.
Его можно провести двумя способами: несколько модифицировать анализ, проведенный в тексте или произ-
вести соответствующую замену переменных.
15.3. Модель найма со скрытой информацией 597

В этих обозначениях задача нанимателя по выбору оптимального контракта имеет следу-
ющий вид:

0)(x? ? w(x? ))] > max
E ? = E[I(w(x) ? c? (x) ? ?
w(·)

w(x? ) ? c? (x? ) w(x) ? c? (x), ?x ? X, ?? ? ?,
? ?

В случае, если существует конечное число типов работников, можно решать эту задачу
перебором. При этом выделяется подмножество типов работников, для которых выполнено
ограничение участия. Для каждого такого подмножества решается эта задача, дополненная
соответствующими ограничениями участия/неучастия и находится значение ожидаемой при-
были в максимуме. Затем находится то подмножество, для которого такая ожидаемая прибыль
максимальна.
Если для рассматриваемых работников выполнено условие возрастания издержек по ? , —

c? (x)( ?x ? X) ? ?
c? (x) ?, —

то перебор можно сократить, поскольку условия найма, выгодные для работников типа ? ,
окажутся таковыми и для работника типа ? при ? < ? , т. е.

w(x) ? c? (x) 0 ? w(x) ? c? (x) 0.

Кроме того, из того, что работнику типа ? безразлично, подписывать контракт или нет,
следует, что выполняется ограничение неучастия для работника типа ? при ? > ? , т. е.

w(x) ? c? (x) = 0 и ? > ? ? w(x) ? c? (x) 0.

Из этих рассуждений следует, что можно рассматривать задачи, в которых подписывают
контракт только работники с ? меньше некоторого порогового значения, причем ограничения
неучастия для остальных типов работников можно не учитывать. Это позволяет без поте-
ри общности ограничится анализом случая, когда наниматель предлагает контракт, который
выгодно подписать работнику любого типа, т. е. когда подмножество типов работников, для
которых выполнено ограничение участия, совпадает со всем множеством ?.
Проанализируем такой случай. Ему соответствует следующая задача:

E ? = E(x? ? w(x? )) > max
? ?
w(·)

w(x? ) ? c? (x? ) w(x) ? c? (x), ?x ? X, ?? ? ?,
? ?
w(x? ) ? c? (x? ) 0, ?? ? ?.
? ?

Как и в модели с наблюдаемыми действиями, мы предполагаем, что работник выбирает те
действия, которые выгодны нанимателю, поэтому можно считать, что наниматель сам выби-
рает усилия x? :
?

E ? = E(x? ? w(x? )) > max?
? ?
w(·),x?

w(x? ) ? c? (x? ) w(x) ? c? (x), ?x ? X, ?? ? ?, ()
? ?
w(x? ) ? c? (x? ) 0, ?? ? ?.
? ?

Эта задача имеет бесконечно много решений. Для того чтобы охарактеризовать все ее ре-
шения, мы воспользуемся вспомогательной задачей, в которой рассматриваются только точки
{x? }? и значения функции w(·) в этих точках. При этом в ограничении совместимости сти-
?
мулов множество всех возможных действий X заменяется на множество {x? }? . Упростим
?
15.3. Модель найма со скрытой информацией 598

обозначения: пусть x? — усилия, которые, как планирует наниматель, должен осуществлять
работник типа ? , а w? — соответствующая зарплата. Пары (x? , w? ) будем называть, как и
выше, пакетами. Получаем следующую вспомогательную задачу поиска оптимальных пакетов:

E ? = E(x? ? w? ) > max
w? ,x?

w? ? c? (x? ) w? ? c? (x? ), ??, ? ? ?,
w? ? c? (x? ) 0, ?? ? ?.
Выше мы проанализировали данную задачу.
Если издержки от усилий c? (·) ведут себя неким регулярным образом в зависимости от
? , то, рассматривая эту упрощенную задачу, мы не теряем существенную информацию отно-
сительно оптимальных контрактов. На основе любого ее решение можно построить функцию
w(·) так, что w? = w(x? ), ?? ? ?, причем w(·), {x? }? составляют оптимальный контракт
(обеспечивают максимум в задаче ( )). И наоборот, если w(·), {x? }? — оптимальный контракт
(решение задачи ( )), то соответствующие пары (w(x? ), x? ) являются решениями вспомога-
тельной задачи.
Покажем, что любой набор оптимальных пакетов {w? , x? } можно реализовать как контракт
??
(обуславливающий выбор работниками всех типов уровней усилий, соответствующих заданиям
«их» пакета). Существует простой способ сделать это — реализовать данный набор пакетов
как пакетный контракт, т. е. контракт следующего вида:
?
?w, x < xn ,
?
?
?
?
w(x) = w? , x ? [?? , x??1 ), ? > 1,
? x?
?
?w , x ? x ,
?
? ?1 ?1

где w — достаточно малое число. (Можно также платить w? при x = x? и некоторую доста-
? ?
точно малую величину w при любых других уровнях усилий, либо в условиях контракта в
принципе запретить усилия, отличные от x1 , . . . , xn .)
? ?
Заметим, что работнику типа ? при таком контракте выгодно выбрать усилия x? , гаран-
?
тирующие оплату w? : любому x ? (?? , x??1 ) он предпочитает x = x? , а x? для него не хуже
? x? ? ?
x? .
?




w1
?
c3 (x)

w2
?

w3
?
x
w
x2
? x1
?
x3
?


Рис. 15.21. Оптимальный пакетный контракт для 3 типов работников

Покажем, что этот контракт оптимален. Пусть это не так, то есть существует другой допу-
стимый контракт w(·), который обеспечивает нанимателю более высокую прибыль. Пусть при
?
этом контракте работник типа ? выбирает усилия x? . Тогда пакеты {w? , x? }, где w? = w(?? ),
? ?? ? ?x
15.3. Модель найма со скрытой информацией 599

являются допустимыми в задаче нахождения оптимальных пакетов ( ). Это противоречит
оптимальности пакетов {w? , x? }.
??
Наоборот, любой оптимальный контракт w(·) и соответствующие ему уровни усилий

x? ? argmax{w(x) ? c? (x)}
?

определяют набор оптимальных пакетов {w(x? ), x? }. Действительно, если эти пакеты неопти-
? ?
мальны, то существуют другие допустимые в задаче ( ) пакеты, обеспечивающие нанимателю

<< Предыдущая

стр. 140
(из 165 стр.)

ОГЛАВЛЕНИЕ

Следующая >>