<< Предыдущая

стр. 45
(из 165 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

водителя должно лежать на границе технологического множества. На этом примере видно,
что рыночное равновесие, в отличие от концепции оптимальности по Парето, предполагает
самостоятельную роль предприятий и технологическую эффективность. В равновесии дости-
гается технологическая эффективность даже тогда, когда с общественной точки зрения она
бесполезна.
5.5. Связь равновесия и Парето-оптимума. Теоремы благосостояния 196

Оба эти примера демонстрируют некоторую содержательную недостаточность второй тео-
ремы благосостояния. Дело в том, что в обеих экономиках имеются Парето-оптимумы, эк-
вивалентные рассматриваемым Парето-оптимумам с точки зрения потребителей (в данном
случае — единственного потребителя), на основе которых уже можно сконструировать рав-
новесие.


5.5.1 Задачи

 290. Привести пример равновесия в экономике обмена с двумя потребителями и двумя
благами, в котором первая теорема благосостояния была бы не применима из-за нарушения
предположений, и равновесие нарушало бы ее утверждение. Можно привести графический
пример, либо указать конкретные начальные запасы, ? 1 , ? 2 , функции полезности u1 (·), u2 (·)
и равновесие (p, x).
 291. Привести пример равновесия в экономике обмена с двумя потребителями и двумя бла-
гами, в котором первая теорема благосостояния была бы не применима из-за нарушения пред-
положений, но утверждение первой теоремы благосостояния оставалось бы справедливым.
 292. Привести пример экономики обмена с двумя потребителями и двумя благами, графи-
ческий или с конкретными начальными запасами ? , функциями полезности u1 (·), u2 (·), и
состоянием этой экономики x, для которой вторая теорема благосостояния не применима и
(А) утверждение второй теоремы благосостояния остается справедливым.
(В) утверждение второй теоремы благосостояния неверно.
 293. Сформулируйте предположения первой теоремы благосостояния для экономики обме-
на.
 294. Сформулируйте предположения второй теоремы благосостояния для экономики обме-
на.
 295. Сформулируйте и докажите теоремы благосостояния в модели обмена в условиях стро-
гой монотонности, строгой выпуклости предпочтений и положительности совокупных началь-
ных запасов.
 296. Для каждого из предположений второй теоремы благосостояния покажите (приведя со-
ответствующий пример), что отказ от этого предположения приводит к тому, что утверждение
теоремы оказывается неверным.
 297. Что можно сказать о соотношениях предельных норм замены товаров в потреблении
и производстве в точке равновесия? Связано ли это соотношение с отсутствием Парето-улуч-
шающего изменения состояния? Если данное соотношение нарушается, как следует строить
Парето-улучшение данного состояния экономики?
 298. Пусть допустимые потребительские наборы задаются неравенствами xi 0. Какие из
функций полезности представляют предпочтения, удовлетворяющие условиям первой и (или)
второй теоремы благосостояния?
1) u(x1 , x2 ) = x1 ,
2) u(x1 , x2 ) = ?x1 ,
3) u(x1 , x2 ) = const,
4) u(x1 , x2 ) = x2 + x2 ,
1 2v
v
5) u(x1 , x2 ) = x1 + x2 ,
6) u(x1 , x2 ) = min{x1 , x2 },
7) u(x1 , x2 ) = exp(x1 )x2 ,
8) u(x1 , x2 ) = x1 x2 ,
9) u(x1 , x2 ) = x1 ? 3x2 ,
10) u(x1 , x2 ) = x1 + 2x2 .
5.5. Связь равновесия и Парето-оптимума. Теоремы благосостояния 197

 299. Пусть начальные запасы в экономике обмена лежат на Парето-границе. Какие допол-
нительные условия гарантируют, что на основе точки начальных запасов можно построить
равновесие?
 300. Пусть в экономике обмена с двумя потребителями их функции полезности равны
u1 (x1 ) = x2 + x2 ,
11 12

и
u2 (x2 ) = x2 + x2 .
21 22
Найти Парето-границу. Какие из точек Парето-границы можно реализовать как равновесие
подбором цен и распределения собственности? Решите эту задачу в случае, когда
(1) суммарные начальные запасы двух благ одинаковы,
(2) суммарные начальные запасы двух благ различаются.
 301. В классической экономике обмена с двумя потребителями, функции полезности послед-
них, заданные на R2 , равны +
v v
(а) u1 = x1 ? x2 , u2 = 6 + x1 ? x2 ,
(b) u1 = min{x1 , x2 }, u2 = 6 ? x1 + x2 ,
vv
(c) u1 = x1 x2 , u2 = 6 ? x1 ? x2 .
В каких из трех экономик окажется, что. . .
1) любое равновесие Парето-оптимально (почему именно в этих, а в других — нет?),
2) любое Парето-оптимальное состояние x > 0 можно превратить в равновесие подбором
распределения собственности (почему именно в этих, а в других — нет?).
 302. Сформулируйте и докажите вариант первой теоремы благосостояния (о Парето-опти-
мальности равновесий) на основе сопоставления дифференциальных характеристик Парето-
оптимальных и равновесных состояний. Какие дополнительные предположения о свойствах
функций полезности (помимо дифференцируемости) необходимо сделать?
 303. Первая теорема благосостояния (о Парето-оптимальности равновесий) доказывается от
противного: предполагаем, что существует альтернативное к равновесному состояние (x, y),
более желательный для некоторого потребителя i. Условие локальной ненасыщаемости (сфор-
мулировать) используется для того, чтобы проверить, что:
А) альтернативный вариант дороже чем равновесный для потребителя i;
Б) спрос сбалансирован с предложением в равновесии;
В) . . . . . . . . . . . . . . . . . . .
Укажите словами верный вариант взамен приведенных и запишите его формулой.
 304. В доказательстве второй теоремы благосостояния (о реализуемости Парето-оптимума),
не использующем дифференцируемость, условие выпуклости используется для того, чтобы
применить теорему . . . . . . . . . . . . . . . . . . . . . . . . к множествам . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Сформулируйте применяемую теорему и определение соответствующих множеств.
 305. В доказательстве второй теоремы благосостояния (о реализуемости Парето-оптимума),
использующем дифференцируемость, условие выпуклости используется для того чтобы с помо-
щью теоремы . . . . . . . . . . . . . . . . . . . . . . доказать, что соответствующие компоненты построенного
состояния экономики являются решениями задач . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Сформулируй-
те применяемую теорему, соответствующие задачи и способ применения теоремы.
 306. При доказательстве второй теоремы благосостояния (о реализуемости Парето-опти-
мума как равновесия), использующем дифференцируемость, условия на градиенты функций
нужны для того, чтобы применить Теорему . . . . . . . . . к задаче . . . . . . . . . . . . . . . . . . .
 307. При доказательстве второй теоремы благосостояния (о реализуемости Парето-оптиму-
ма как равновесия) при отсутствии свойства локальной ненасыщаемости не удается показать,
что . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , так как может оказаться что . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(сформулируйте ответ в трех-пяти фразах и поясните, сказанное рисунком).
5.5. Связь равновесия и Парето-оптимума. Теоремы благосостояния 198

 308. При доказательстве второй теоремы благосостояния (о реализуемости Парето-оптиму-
ма как равновесия) при невыполнении условия выпуклости предпочтений не удается показать,
что . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , так как может оказаться что . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(сформулируйте ответ в трех-пяти фразах и поясните, сказанное рисунком).
 309. При доказательстве второй теоремы благосостояния (о реализуемости Парето-оптиму-
ма как равновесия) при невыполнении условия, что рассматриваемая точка — внутренняя,
не удается показать, что . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , так как может оказаться что
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (сформулируйте ответ в трех-пяти фразах и поясните,
сказанное рисунком).
 310. При доказательстве второй теоремы благосостояния (о Парето-оптимальности равно-
весных распределений) при невыполнении условия локальной ненасыщаемости, не удается по-
казать, что . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , так как может оказаться что . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
ответ в трех-пяти фразах и поясните, сказанное рисунком).
 311. Пусть два потребителя (потребление первого обозначим x, потребление второго обо-
значим z ) в классической ситуации обмена имеют функции полезности

ux (x) = xa + xb , uz (z) = cz1 + dz2 ,
1 2


где x 0, z 0, и обладают начальными запасами ? x и ? z .
а) При каких значениях параметров (a, b, c, d, ?) можно гарантировать, что состояние эко-
номики, не улучшаемое по Парето, можно реализовать как равновесие?
Предположим, что в этой экономике осуществилось равновесие.
б) При каких значениях параметров (a, b, c, d, ?) можно гарантировать, что оно не улуч-
шаемо по Парето?
в) При каких значениях параметров (a, b, c, d, ?) можно утверждать, что для обоих потре-
бителей оно не лучше, чем начальное состояние?
г) При каких значениях параметров (a, b, c, d, ?) можно утверждать, что для одного из
потребителей оно не лучше, чем начальное состояние? О каком из потребителей идет речь?
 312. В экономике обмена один потребитель имеет функцию полезности ux (x1 , x2 ) = ln x1 +
ln x2 , а другой — uz (z1 , z2 ) (x1 , x2 , z1 , z2 0). Начальные запасы равны ? x = (1, 1) и ? z =
(2, 1).
Укажите функцию uz (·) и равновесие Вальраса такие, что равновесное состояние не явля-
ется Парето-оптимальным состоянием данной экономики.
Какое условие теоремы (какой?) при этом будет нарушаться?
Объяснить, почему это равновесие не Парето-оптимально.
 313. В экономике обмена один потребитель имеет функцию полезности ux (x1 , x2 ), а дру-
гой — uz (z1 , z2 ) = z1 +z2 (x1 , x2 , z1 , z2 0). Начальные запасы равны ? x = (4, 1) и ? z = (2, 2).
Укажите функцию ux (·) и равновесие Вальраса в соответствующей экономике такие, что
равновесное состояние этой экономики не является Парето-оптимальным. Объяснить, почему
это равновесие не Парето-оптимально.
Какое условие теоремы (какой?) при этом нарушается?
 314. В экономике обмена один потребитель имеет функцию полезности ux (x1 , x2 ) = 2x1 +x2 ,
а другой — uz (z1 , z2 ) (x1 , x2 , z1 , z2 0). Начальные запасы равны ? x = (3, 2) и ? z = (2, 1).
Укажите функцию uz (·) такую, что не каждый Парето-оптимум можно реализовать как
равновесие. Какое условие теоремы (какой?) при этом нарушается?
Какие именно Парето-оптимальные состояния нельзя реализовать как равновесие. Объяс-
нить, почему.
 315. В экономике имеется один производитель с технологией, задаваемой неявной производ-
v
ственной функцией g(y) = ?y1 ? y2 и один потребитель с функцией полезности u(x1 , x2 ).
5.5. Связь равновесия и Парето-оптимума. Теоремы благосостояния 199

Начальные запасы равны (?1 , ?2 ) = (2, 0). Известно, что функция полезности может быть од-
ного из трех видов: u = min(Ax1 , Bx2 ), u = max(Ax1 , Bx2 ) или же u = Ax1 + Bx2 . Выберите
функцию и подберите параметры A и B так, чтобы точка (x1 , x2 ) = (1, 1) соответствовала
оптимуму Парето, но на ее основе нельзя было бы сконструировать равновесие. Объясните,
почему это будет оптимум. Объясните, почему нельзя сконструировать равновесие. Какие усло-
вия теоремы (какой?) при этом нарушены? Проиллюстрируйте анализ на графике с помощью
множества производственных возможностей и кривых безразличия.
 316. В экономике имеются потребители i = 1, 2 с функциями полезности ui (xiA , xiB ), где
xiA , xiB 0. Суммарные начальные запасы равны (??A , ??B ) = (2, 2). Известно, что u2 =
v
x2A + x2B , а функция полезности 1-го может быть одного из трех видов: u1 = ? ln(1 + x1A ) +
? ln(1+x1B ), u1 = ?x1A +?x1B или же u1 = ?(x1A )2 +?(x1B )2 . Выберите функцию и подберите
параметры ? и ? так, чтобы точка (x1A , x1B ) = (2, 0) соответствовала оптимуму Парето, но на
ее основе нельзя было бы сконструировать равновесие. Объясните, почему это будет оптимум.
Объясните, почему нельзя сконструировать равновесие. Какие условия теоремы (какой?) при
этом нарушены? Проиллюстрируйте анализ на диаграмме Эджворта.
 317. В экономике имеется один производитель с технологией, задаваемой неявной произ-
водственной функцией g(y) = ?y1 ? y2 и один потребитель с функцией полезности u(x1 , x2 ).
Начальные запасы равны (?1 , ?2 ) = (1, 3). Известно, что функция полезности может быть
одного из трех видов: u = min(Ax1 , x2 ), u = Ax1 + x2 или же u = max(x1 x2 , A). Выберите
функцию и подберите параметр A так, чтобы точка (x1 , x2 ) = (1, 1) соответствовала оптиму-
му Парето, но на ее основе нельзя было бы сконструировать равновесие. Объясните, почему
это будет оптимум. Объясните, почему ее нельзя реализовать как равновесие. Какие усло-
вия теоремы (какой?) при этом нарушены? Проиллюстрируйте анализ на графике с помощью
множества производственных возможностей и кривых безразличия.
 318. В экономике имеются потребители i = 1, 2 с функциями полезности ui (xiA , xiB ), где
xiA , xiB 0. Суммарные начальные запасы равны (??A , ??B ) = (2, 2). Известно, что u1 =
2 +(x )2 , а функция полезности 2-го может быть одного из трех видов: u = max(x , ?+
(x1A ) 2
1B 2A
x2B ), u2 = ?x2A +x2B или же u2 = ?x2A x2B . Выберите функцию и подберите параметр ? так,
чтобы точка (x1A , x1B ) = (1, 2) соответствовала оптимуму Парето, но на ее основе нельзя было
бы сконструировать равновесие. Объясните, почему это будет оптимум. Объясните, почему
нельзя сконструировать равновесие. Какие условия теоремы (какой?) при этом нарушены?
Проиллюстрируйте анализ на диаграмме Эджворта.
 319. Какие из нижеприведенных функций полезности соответствуют условиям 1-й теоремы
благосостояния?
I. u(x1 , x2 ) = ?1/x1 ? 1/x2 , II. u(x1 , x2 ) = x1 ? x2 , III. u(x1 , x2 ) = 100,
а) I и II.
б) I и III.
в) II и III.
г) только I.
 320. Для выполнения первой теоремы благосостояния требуется, чтобы функция полезности
удовлетворяла свойствам. . .
а) только локальной ненасыщаемости,
б) локальной ненасыщаемости и вогнутости,
в) дифференцируемости и вогнутости,
г) только вогнутости.
 321. Для выполнения второй теоремы благосостояния требуется, чтобы функция полезности
удовлетворяла свойствам. . .
а) локальной ненасыщаемости,
б) локальной ненасыщаемости и вогнутости,
5.5. Связь равновесия и Парето-оптимума. Теоремы благосостояния 200

в) вогнутости,
г) вогнутости и дифференцируемости.
 322. Если функция полезности одного из потребителей является локально ненасыщаемой,
то. . .
а) первая теорема благосостояния несправедлива;
б) бюджетное ограничение выполняется как равенство;
в) точка равновесия не является внутренней;
г) вторая теорема благосостояния несправедлива.
 323. Вторая теорема благосостояния может не выполняться, если. . .
а) у одного из потребителей в его множестве потребительских наборов есть наилучший
набор;
б) технологические множества выпуклы;
в) функция полезности хотя бы одного из потребителей недифференцируема;
г) функция полезности хотя бы одного из потребителей локально ненасыщаема.
 324. В экономике двух потребителей с двумя благами функции полезности имеют вид
v v
u1 = x11 + 2 x12 и u2 = 2 x21 + x22 .

Начальные запасы 1-го потребителя равны (1, 3), а 2-го — (2, 1).
Пусть x11 = 2, x12 = 1, x21 = 1, x22 = 3, p1 = 1, p2 = 1, T1 = ?1, T2 = 1.
(а) Покажите формально, что (p, x, T) является равновесием с трансфертами.
(б) Является ли это равновесие оптимальным по Парето? Обоснуйте свой ответ.
 325. В экономике с двумя благами функция полезности единственного потребителя имеет
вид
v
u = 2 x1 + x2 ,
а его начальные запасы равны (3, 1). Технология единственного предприятия задана неявной
производственной функцией
v
g = ?y1 + 2 ?y2 .
Пусть x1 = 4, x2 = 3/4, y1 = 1, y2 = ?1/4.
(а) Покажите формально, что (x, y) является Парето-оптимальным состоянием.
(б) Можно ли на основе этого Парето-оптимального состояния сконструировать равнове-
сие? Обоснуйте свой ответ.
 326. В экономике двух потребителей с двумя благами функции полезности имеют вид
v v
u1 = x11 + 4 x12 и u2 = 2 x21 + x22 .

Начальные запасы 1-го потребителя равны (2, 4), а 2-го — (1, 1).
Пусть x11 = 1, x12 = 2, x21 = 2, x22 = 3.
(а) Покажите формально, что x является Парето-оптимальным состоянием.
(б) Можно ли на основе этого Парето-оптимального состояния сконструировать равнове-
сие? Обоснуйте свой ответ.
 327. В экономике с двумя благами функция полезности единственного потребителя имеет
вид
v
u = x1 + 2 x2 ,

<< Предыдущая

стр. 45
(из 165 стр.)

ОГЛАВЛЕНИЕ

Следующая >>