<<

. 56
( 61 .)



>>


[77] M. Canalis-Durand, J.-P. Ramis, R. Schafke, and Y. Sibuya,
¨
Gevrey solutions of singularly perturbed di¬erential and di¬erence
equations, tech. rep., IRMA Strasbourg, 1999. Accepted by J. reine
und angew. Math.

[78] B. Candelbergher, J. C. Nosmas, and F. Pham, Approche de
la R´surgence, Hermann, Paris, 1993.
e

[79] G. Chen, An algorithm for computing the formal solutions of di¬er-
ential systems in the neighbourhood of an irregular singular point, in
Proceedings of ISSAC ™90, 1990, pp. 231“235.

[80] , Forme normale d™Arnold et r´duction formelle des syst`mes
e e
d™´quations lin´aires aux di¬´rences, Aequat. Math., 54 (1997),
e e e
pp. 264“288.

[81] G. Chen and A. Fahim, Formal reduction of linear di¬erence sys-
tems, Pac. J. of Math., 182 (1998), pp. 37“54.

[82] E. A. Coddington and N. Levinson, Theory of Ordinary Di¬er-
ential Equations, McGraw“Hill, 1955.

[83] O. Costin, On Borel summation and Stokes phenomena for rank-1
nonlinear systems of ordinary di¬erential equations, Duke Math. J.,
93 (1998), pp. 289“344.
´
[84] P. Deligne, Equations Di¬´rentielles a Points Singuliers R´guliers,
e ` e
vol. 163 of Lecture Notes in Math., Springer, 1970.
¨
[85] V. Dietrich, Uber eine notwendige und hinreichende Bedingung f¨r u
regul¨r singul¨res Verhalten von linearen Di¬erentialgleichungssyste-
a a
men, Math. Zeitschr., 163 (1978), pp. 191“197.

[86] , Zur Reduktion von linearen Di¬erentialgleichungen, Math. An-
nalen, 237 (1978), pp. 79“95.
¨
[87] , Uber Reduzierbarkeit und maximale Ordnung bei linearen Dif-
ferentialgleichungssystemen, Complex Variables, 2 (1984), pp. 353“
386.

[88] , ELISE, an algorithm to compute asymptotic representations
for solutions of linear di¬erential equations, realized with the com-
puter algebra system MAPLE, J. Symbolic Comput., 14 (1992),
pp. 85“92.

[89] R. B. Dingle, Asymptotic Expansions: Their Derivation and Inter-
pretation, Academic Press, Oxford, 1973.
274 References

[90] T. M. Dunster and D. A. Lutz, Convergent factorial series expan-
sions for Bessel functions, Proc. R. Soc. London Ser. A, 422 (1989),
pp. 7“21.

[91] T. M. Dunster, D. A. Lutz, and R. Schafke, Convergent
¨
Liouville-Green expansions for second order linear di¬erential equa-
tions, with an application to Bessel functions, Proc. R. Soc. London
Ser. A, 440 (1993), pp. 37“54.

[92] A. Duval, Lemmes d™Hensel et factorisation formelle pour les
op´rateurs aux di¬´rences, Funkcialaj Ekvacioj, 26 (1983), pp. 349“
e e
368.

[93] A. Duval and C. Mitschi, Matrices de Stokes et groupe de Ga-
lois des ´quations hyperg´ometriques con¬‚uents generalis´es, Pac. J.
e e e
Math., 138 (1989), pp. 25“56.

[94] J. Ecalle, Les fonctions r´surgentes I“II, Publ. Math. d™Orsay, Uni-
e
versit´ Paris Sud, 1981.
e

[95] , Les fonctions r´surgentes III, Publ. Math. d™Orsay, Universit´
e e
Paris Sud, 1985.

[96] , Introduction ` l™Acc´l´ration et ` ses Applications, Travaux en
a ee a
Cours, Hermann, Paris, 1993.

[97] A. M. Emamzadeh, Numerical investigations into the Stokes phe-
nomenon I, J. Inst. Math. Appl., 19 (1977), pp. 77“86.

[98] , Numerical investigations into the Stokes phenomenon II, J.
Inst. Math. Appl., 19 (1977), pp. 149“157.

[99] , A numerical method for the calculation of the Stokes constants,
Appl. Sci. Res., 34 (1978), pp. 161“178.

[100] A. Erdelyi, Higher Transcendental Functions, McGraw“Hill, 1953.
´

[101] , Asymptotic Expansions, Dover Publications, New York, 1956.

[102] B. F. Faber, Summability theory for analytic di¬erence and differen-
tial“di¬erence equations, Ph.D. thesis, Rijksuniversiteit Groningen,
1998.

[103] W. B. Ford, Studies on Divergent Series and Summability & The
Asymptotic Developments of Functions de¬ned by MacLaurin Series,
Chelsea, 1960.

[104] A. Fruchard and R. Schafke, On the Borel transform, C. R.
¨
Acad. Sci., 323 (1996), pp. 999“1004.
References 275

[105] F. R. Gantmacher, Theory of Matrices, vol. I & II, Chelsea, 1959.

[106] R. Gerard and A. H. M. Levelt, Invariants mesurant l™irr´- e
´
gularit´ en un point singulier des syst`mes d™´quations di¬´rentielles
e e e e
lin´aires, Ann. Inst. Fourier Grenoble, 23 (1973), pp. 157“195.
e

[107] R. Gerard and D. A. Lutz, Convergent factorial series solutions
´
of singular operator equations, Analysis, 10 (1990), pp. 99“145.

[108] R. Gerard and H. Tahara, Formal power series solutions of non-
´
linear ¬rst order partial di¬erential equations, Funkcialaj Ekvacioj,
41 (1998), pp. 133“166.

[109] H. E. Gollwitzer and Y. Sibuya, Stokes multipliers for subdom-
inant solutions of second order di¬erential equations with polynomial
coe¬cients, J. reine u. angew. Math., 243 (1970), pp. 98“119.

[110] I. J. Good, Note on the summation of a classical divergent series,
J. London Math. Soc., 16 (1941), pp. 180“182.

[111] V. P. Gurarij and V. I. Matsaev, Stokes multipliers for systems
of linear ordinary di¬erential equations of ¬rst order, Soviet Math.
Dokl., 31 (1985), pp. 52“56.

[112] G. H. Hardy, On the summability of series by Borel™s and Mittag-
Le¬„er™s methods, J. London Math. Soc., 9 (1934), pp. 153“157.

[113] , Note on a divergent series, Proc. Cambr. Phil. Soc., 37 (1941),
pp. 1“8.

[114] W. A. Harris Jr., Characterization of linear di¬erential systems
with a regular singular point, Proc. Edinburgh Math. Soc., 18 (1972),
pp. 93“98.

[115] J. Heading, The Stokes phenomenon and certain n-th order di¬er-
ential equations I, II, Proc. Cambridge Phil. Soc., 53 (1957), pp. 399“
441.

[116] , The Stokes phenomenon and the Whittaker function, J. London
Math. Soc., 37 (1962), pp. 195“00.

[117] A. Hilali and A. Wazner, Calcul des invariants de Malgrange
et de G´rard et Levelt d™un syst`me di¬´rentiel lin´aire en un point
e e e e
singulier irr´gulier, J. Di¬erential Equ., 69 (1987).
e

[118] , Formes super“irr´ducibles des syst`mes di¬´rentiels lin´aires,
e e e e
Numer. Math., 50 (1987), pp. 429“449.
276 References

[119] D. Hilbert, Grundz¨ge einer allgemeinen Theorie der linearen In-
u
tegralgleichungen (Dritte Mitt.), Nachr. Ges. der Wiss., G¨ttingen,
o
(1905), pp. 307“338.

[120] E. Hille, Ordinary Di¬erential Equations in the Complex Domain,
Wiley, New York, 1976.

[121] F. L. Hinton, Stokes multipliers for a class of ordinary di¬erential
equations, J. Math. Phys. (10), 20 (1979), pp. 2036“2046.

[122] M. v. Hoeij, Rational solutions of the mixed di¬erential equation
and its application to factorization of di¬erential operators, in Pro-
ceedings of ISSAC ™96, ACM Press, 1996.

[123] , Factorization of di¬erential operators with rational function
coe¬cients, J. Symbolic Comput., 24 (1997), pp. 537“561.

[124] , Formal solutions and factorization of di¬erential operators
with power series coe¬cients, J. Symbolic Comput., 24 (1997), pp. 1“
30.

[125] J. Horn, Fakult¨tenreihen in der Theorie der linearen Di¬erential-
a
gleichungen, Math. Annalen, 71 (1912), pp. 510“532.

[126] , Integration linearer Di¬erentialgleichungen durch Laplacesche
Integrale und Fakult¨tenreihen, Jahresber. DMV, 25 (1916), pp. 74“
a
83.

[127] , Integration linearer Di¬erentialgleichungen durch Laplacesche
Integrale I, Math. Zeitschr., 49 (1944), pp. 339“350.

[128] , Integration linearer Di¬erentialgleichungen durch Laplacesche
Integrale II, Math. Zeitschr., 49 (1944), pp. 684“701.

[129] P. Hsieh, On the asymptotic integration of x2 y ’ p(x)y = 0, Arch.
Math. Brno (2), 14 (1978), pp. 75“83.

[130] P. Hsieh and Y. Sibuya, On the asymptotic integration of sec-
ond order linear ordinary di¬erential equations with polynomial coef-
¬cients, J. Math. Anal. and Appl., 16 (1966), pp. 84“103.

[131] M. Hukuhara, Fifty years of ordinary di¬erential equations I,
Sˆugaku, 34 (1982), pp. 164“171.
u

[132] , Fifty years of ordinary di¬erential equations II, Sˆugaku, 34
u
(1982), pp. 262“269.

[133] G. K. Immink, Asymptotic of analytic di¬erence equations, Ph.D.
thesis, Rijksuniversiteit Groningen, 1983.
References 277

[134] , Asymptotics of Analytic Di¬erence Equations, vol. 1085 of Lec-
ture Notes in Math., Springer, 1984.

[135] , A note on the relationship between Stokes multipliers and for-
mal solutions of analytic di¬erential equations, SIAM J. of Math.
Anal., 21 (1990), pp. 782“792.

[136] , On the asymptotic behavior of the coe¬cients of asymptotic
power series and its relevance to Stokes phenomena, SIAM J. of Math.
Anal., 22 (1991), pp. 524“542.

[137] , Multi-summability and the Stokes phenomenon, J. Dynamical
and Control Systems, 1 (1995), pp. 483“534.

[138] E. L. Ince, Ordinary Di¬erential Equations, Dover Publications,
New York, 1956.

[139] M. Iwano, Int´gration analytique d™un syst`me d™´quations non
e e e
lin´aires dans le voisinage d™un point singulier I, Ann. Mat. Pura
e
Appl., 44 (1957), pp. 261“292.

[140] , Int´gration analytique d™un syst`me d™´quations non lin´aires
e e e e
dans le voisinage d™un point singulier II, Ann. Mat. Pura Appl., 47
(1959), pp. 91“149.

[141] K. Iwasaki, H. Kimura, S. Shimomura, and M. Yoshida, From
Gauss to Painlev´: A Modern Theory of Special Functions, Vieweg
e
Verlag, Wiesbaden, 1991.

[142] F. Jung, F. Naegele, and J. Thomann, An algorithm of multi-
summation of formal power series solutions of linear ODE equations,
Math. and Computers in Simulation, 42 (1996), pp. 409“425.

[143] W. B. Jurkat, Meromorphe Di¬erentialgleichungen, vol. 637 of Lec-
ture Notes in Math., Springer, 1978.

<<

. 56
( 61 .)



>>