<<

. 58
( 61 .)



>>


[210] A. B. Olde Daalhuis and F. W. J. Olver, Hyperasymptotic so-
lutions of second“order linear di¬erential equations I, Methods Appl.
Analysis, 2 (1995), pp. 173“197.

[211] , On the calculation of Stokes™ multipliers for linear di¬eren-
tial equations of the second order, Methods Appl. Analysis, 2 (1995),
pp. 348“367.
References 283

[212] F. W. J. Olver, Introduction to Asymptotics and Special Functions,
Academic Press, 1974.

[213] S. Ouchi, Formal solutions with Gevrey type estimates of nonlinear
partial di¬erential equations, J. Math. Sc. Univ. Tokyo, 1 (1994),
pp. 205“237.

[214] , Singular solutions with asymptotic expansion of linear partial
di¬erential equations in the complex domain, Publ. RIMS Kyoto Uni-
versity, 34 (1998), pp. 291“311.

[215] R. B. Paris, On the asymptotic expansions of solutions of an nth
order linear di¬erential equation, Proc. Roy. Soc. Edinburgh, 85 A
(1980), pp. 15“57.

[216] R. B. Paris and A. D. Wood, The asymptotic expansion of solu-
tions of the di¬erential equation uiv + »2 [(z 2 + c)u + azu + bu] = 0
for large |z|, Phil. Trans. Roy. Soc. London, 293 (1979), pp. 511“533.

[217] , On the asymptotic expansion of solutions of an nth order linear
di¬erential equation with power coe¬cients, Proc. Roy. Irish Acad.,
85 A (1985), pp. 201“220.

[218] , Asymptotics of High Order Di¬erential Equations, vol. 129 of
Pitman Research Notes in Math. Series, Longman, Harlow, U.K.,
1986.

[219] F. Pittnauer, Vorlesungen uber asymptotische Reihen, vol. 301 of
¨
Lecture Notes in Math., Springer, 1972.

[220] J. Plemelj, Riemannsche Funktionenscharen mit gegebener Mo-
nodromiegruppe, Monatsh. f. Math. u. Phys., 19 (1908), pp. 211“246.

[221] , Problems in the Sense of Riemann and Klein, Interscience
Publications, New York, 1964.

[222] H. Poincare, Sur les int´grales irreguli`res des ´quations lin´aires,
e e e e
´
Acta Math., 8 (1886), pp. 295“344.

[223] C. Praagman, The formal classi¬cation of linear di¬erence opera-
tors, Proc. Kon. Ned. Ac. Wet., 86 (1983), pp. 249“261.

[224] M. v. d. Put and M. F. Singer, Galois Theory of Di¬erence
Equations, vol. 1666 of Lecture Notes in Math., Springer, 1997.

[225] J.-P. Ramis, D´vissage Gevrey, Ast´risque, 59-60 (1978), pp. 173“
e e
204.
284 References

[226] , Les s´ries k-sommable et leurs applications, in Complex Analy-
e
sis, Microlocal Calculus and Relativistic Quantum Theory, D. Iagol-
nitzer, ed., vol. 126 of Lecture Notes in Physics, Springer, 1980,
pp. 178“199.
[227] , Ph´nom`ne de Stokes et ¬ltration Gevrey sur le groupe de
e e
Picard-Vessiot, C. R. Acad. Sci., 301 (1985), pp. 165“167.
[228] , Ph´nom`ne de Stokes et resommation, C. R. Acad. Sci., 301
e e
(1985), pp. 99“102.
[229] , S´ries Divergentes et Th´ories Asymptotiques, vol. 121 of
e e
Panoramas et synth`ses, Soc. Math. France, Paris, 1993.
e
[230] J.-P. Ramis and Y. Sibuya, A new proof of multisummability of
formal solutions of non linear meromorphic di¬erential equations,
Annal. Inst. Fourier Grenoble, 44 (1994), pp. 811“848.
[231] V. Reuter, Verbindungsprobleme bei meromorphen Di¬erentialglei-
chungen vom Poincar´-Rang r ≥ 2, Dissertation, Universit¨t Ulm,
e a
1991.
[232] , On connection problems for di¬erential equations of arbitrary
Poincar´ rank, C. R. Acad. Sci., 315 (1992), pp. 1371“1374.
e
[233] J. F. Ritt, On the derivatives of a function at a point, Ann. Math.,
18 (1916), pp. 18“23.
[234] A. Ronveaux, ed., Heun™s Di¬erential Equations, Oxford Science
Publisher, New York, 1995.
[235] F. W. Schafke, Einf¨hrung in die Theorie der speziellen Funktio-
u
¨
nen der mathematischen Physik, Springer, 1963.
[236] F. W. Schafke and D. Schmidt, Gew¨hnliche Di¬erentialglei-
o
¨
chungen, Die Grundlagen der Theorie im Reellen und Komplexen,
vol. 108 of Heidelberger Taschenb¨cher, Springer, 1973.
u
¨
[237] R. Schafke, Uber das globale analytische Verhalten der L¨sungen
o
¨
der uber die Laplace“Transformation zusammenh¨ngenden Di¬eren-
¨ a
tialgleichungen t x (t) = (A + tB) x und (s ’ B) v = (ρ ’ A) v, Dis-
sertation, Essen, 1979.
[238] , The connection problem for two neighboring regular singular
points of general linear complex ordinary di¬erential equations, SIAM
J. Math. Anal., 11 (1980), pp. 863“875.
[239] , A connection problem for a regular and an irregular singu-
lar point of complex ordinary di¬erential equations, SIAM J. Math.
Anal., 15 (1984), pp. 253“271.
References 285

¨
[240] , Uber das globale Verhalten der Normall¨sungen von x (t) =
o
’1
(B+t A) x(t), und zweier Arten von assoziierten Funktionen, Math.
Nachr., 121 (1985), pp. 123“145.

[241] R. Schafke and D. Schmidt, The connection problem for general
¨
linear ordinary di¬erential equations at two regular singular points
with applications in the theory of special functions, SIAM J. Math.
Anal., 11 (1980), pp. 848“862.

[242] R. Schafke and H. Volkmer, On the reduction of the Poincar´ e
¨
rank of singular systems of ordinary di¬erential equations, J. reine u.
angew. Math., 365 (1986), pp. 80“96.
¨
[243] S. Schlosser-Haupt and H. Wyrwich, Uber die Stokesschen
Multiplikatoren gewisser linearer Di¬erentialgleichungen n-ter Ord-
nung, Math. Nachr., 95 (1987), pp. 265“275.

[244] D. Schmidt, Die L¨sung der linearen Di¬erentialgleichung 2. Ord-
o
nung um zwei einfache Singularit¨ten durch Reihen nach hyper-
a
geometrischen Funktionen, J. reine u. angew. Math., 309 (1979),
pp. 127“148.

[245] , Global representations for the solutions of second-order mero-
morphic di¬erential equations by special functions, in Ordinary and
partial di¬erential equations, Vol. III, Pitman Research Notes in
Mathematics, Vol. 254, B. D. Sleeman and R. J. Jarvis, eds., Long-
man, Harlow, U.K., 1991, pp. 183“207.

[246] A. Schuitman, A class of integral transforms and associated func-
tion spaces, Ph.D. thesis, TH Delft, 1985.

[247] Y. Sibuya, Stokes multipliers of subdominant solutions of the dif-
ferential equation y ’ (x3 + »)y = 0, Proc. Amer. Math. Soc., 18
(1967), pp. 238“243.

, Subdominant solutions of the di¬erential equation y ’ »2 (x ’
[248]
a1 ) (x ’ a2 ) . . . (x ’ am )y = 0, Acta Math., 119 (1967), pp. 235“273.

[249] , Subdominant solutions admitting a prescribed Stokes phe-
nomenon, in Int. Conf. on Di¬erential Equations, Academic Press,
New York, 1975, pp. 709“738.

[250] , Stokes™ phenomena, Bull. Amer. Math. Soc., 83 (1977),
pp. 1075“1077.

[251] , Linear Di¬erential Equations in the Complex Domain: Prob-
lems of Analytic Continuation, vol. 82 of Transl. Math. Monographs,
Amer. Math. Soc., Providence, R.I., 1990.
286 References

[252] , Gevrey asymptotics and Stokes multipliers, in Di¬erential Equ.
and Comp. Algebra, M. F. Singer, ed., Academic Press, 1991, pp. 131“
147.

[253] Y. Sibuya and S. Sperber, Some new results on power series so-
lutions of algebraic di¬erential equations, in Proc. of Advanced Sem.
on Singular Perturbations and Asymptotics, Academic Press, New
York, 1980, pp. 379“404.

[254] Y. Sibuya and T. Tabara, Calculation of a Stokes multiplier,
Asympt. Analysis, 13 (1996), pp. 95“107.

[255] S. Y. Slavyanov, On the question of the Stokes phenomenon for
the equation y (z) ’ z m y(z) = 0, Sov. Phys. Dokl., 30 (1985).

[256] V. R. Smilyansky, Stokes multipliers for systems of linear ordinary
di¬erential equations I, Di¬erential Equations, 6 (1970), pp. 375“384.

[257] B. Sternin and V. Shatalov, Borel-Laplace Transform and
Asymptotic Theory, CRC“Press, London, 1995.

[258] G. G. Stokes, On the discontinuity of arbitrary constants which
appear in divergent developments, Trans. Camb. Phil. Soc., 10 (1857),
pp. 106“128.

[259] T. J. Tabara, A locally prescribed Stokes phenomenon, Funkcialaj
Ekvacioj, 35 (1992), pp. 429“450.

[260] J. Thomann, Resommation de s´ries formelles, Numer. Math., 58
e
(1990), pp. 503“535.

[261] , Resommation de s´ries formelles solutions d™´quations di¬-
e e
´rentielles lin´aires ordinaires du second ordre dans le champ com-
e e
plexe au voisinage de singularit´s irr´guli`res, Numer. Math., 58
e e e
(1990), pp. 502“535.

[262] , Proc´d´s formels et num´riques de sommation de s´ries solu-
ee e e
tions d™´quations di¬´rentielles, Expos. Math., 13 (1995), pp. 223“
e e
246.

[263] E. Tournier, Solutions formelles d™´quations di¬´rentielles. Th`se
e e e
d™Etat, Universit´ de Grenoble, 1987.
e

[264] A. Tovbis, On a method of constructing Stokes multipliers, Sov.
Math. Dokl., 35 (1987), pp. 202“206.

[265] , Lateral connection problem and Stokes phenomenon for certain
functional spaces, Asympt. Anal., 4 (1991), pp. 215“233.
References 287

[266] W. J. Trjitzinsky, Laplace integrals and factorial series in the the-
ory of linear di¬erential and linear di¬erence equations, Trans. Amer.
Math. Soc., 37 (1935), pp. 80“146.

[267] H. L. Turrittin, Stokes multipliers for asymptotic solutions of a
certain di¬erential equation, Trans. Amer. Math. Soc., 68 (1950),
pp. 304“329.

[268] , Convergent solutions of ordinary linear homogeneous di¬eren-
tial equations in the neighborhood of an irregular singular point, Acta
Math., 93 (1955), pp. 27“66.

[269] , The formal theory of irregular homogeneous linear di¬erence
and di¬erential equations, Bol. Soc. Mat. Mexicana, (1960), pp. 225“
264.

[270] , Reducing the rank of ordinary di¬erential equations, Duke
Math. J., 30 (1963), pp. 271“274.

[271] , Reduction of ordinary di¬erential equations to the Birkho¬
canonical form, Trans. Amer. Math. Soc., 107 (1963), pp. 485“507.

, Stokes multipliers for the di¬erential equation y (n) (x) ’
[272]
y(x)/x = 0, Funkcialaj Ekvacioj, 9 (1966), pp. 261“272.

[273] J. Vandamme, Probl`me de Riemann“Hilbert pour une repr´senta-
e e
tion de monodromie triangulaire sup´rieure, Ph.D. thesis, Universit´
e e
de Nice, 1998.

[274] V. S. Varadarajan, Meromorphic di¬erential equations, Expos.
Math., 9 (1991), pp. 97“188.

[275] , Linear meromorphic di¬erential equations: a modern point of

<<

. 58
( 61 .)



>>