<<

. 21
( 78 .)



>>

explanation of con¬nement in the strong coupling limit of lattice gauge theory.
In this limit, con¬nement results from the kinetic energy [100] of the compact
link variables. The potential energy generated by the magnetic ¬eld, which has
been the crucial ingredient in the construction of the Nielsen“Olesen Vortex and
the ™t Hooft“Polyakov monopole, is negligible in this limit. It is no accident that,
as we have seen, Polyakov-loop variables, which as group elements are compact,
also exhibit con¬nement-like behavior.
Apart from instantons as the genuine topological objects, Yang“Mills theo-
ries exhibit non-trivial topological properties related to the center of the gauge
group. The center symmetry as a residual gauge symmetry o¬ers the possibility
to formulate con¬nement as a symmetry property and to characterize con¬ned
and decon¬ned phases. The role of the center vortices (gauge transformations
which are singular on a two dimensional space-time sheet) remains to be clari¬ed.
The existence of obstructions in imposing gauge conditions is another non-trivial
property of non-abelian gauge theories which might be related to con¬nement.
I have described the appearance of monopoles as the results of such obstruc-
tions in so-called diagonalization or abelian gauges. These singular ¬elds can
be characterized by topological methods and, on a formal level, are akin to
the ™t Hooft“Polyakov monopole. I have described the di¬culties in developing
a viable framework for formulating their dynamics which is supposed to yield
con¬nement via a dual Meissner e¬ect.


Acknowledgment
I thank M. Thies, L.v. Smekal, and J. Pawlowski for discussions on the vari-
ous subjects of these notes. I™m indebted to J. J¨ckel and F. Ste¬en for their
a
meticulous reading of the manuscript and for their many valuable suggestions
for improvement.


References
1. C. F. Gauß , Werke, Vol. 5, G¨ttingen, K¨nigliche Gesellschaft der Wissenschaften
o o
1867, p. 605
2. B. A. Dubrovin, A. T. Fomenko, and S. P. Novikov, Modern Geometry, Part II.
Springer Verlag 1985
3. T. Frankel, The Geometry of Physics, Cambridge University Press, 1997
4. P.G. Tait, Collected Scienti¬c Papers, 2 Vols., Cambridge University Press,
1898/1900
Topological Concepts in Gauge Theories 95

5. H. K. Mo¬at, The Degree of Knottedness of Tangled Vortex Lines, J. Fluid Mech.
35, 117 (1969)
6. P. A. M. Dirac, Quantised Singularities in the Electromagnetic Field, Proc. Roy.
Soc. A 133, 60 (1931)
7. C. N. Yang and R. L. Mills, Conservation of Isotopic Spin and Isotopic Gauge
Invariance Phys. Rev. 96, 191 (1954)
8. N. K. Nielsen and P. Olesen, Vortex-Line Models for Dual Strings, Nucl. Phys. B
61, 45 (1973)
9. P. G. de Gennes, Superconductivity of Metals and Alloys, W. A. Benjamin 1966
10. M. Tinkham, Introduction to Superconductivity, McGraw-Hill 1975
11. G. Blatter, M. V. Feigel™man, V. B. Geshkenbein, A. I. Larkin, and V. M. Minokur,
Rev. Mod. Phys. 66, 1125 (1994)
12. D. Nelson, Defects and Geometry in Condensed Matter Physics, Cambridge Uni-
versity Press, 2002
13. C. P. Poole, Jr., H. A. Farach and R. J. Creswick, Superconductivity, Academic
Press, 1995
14. E. B. Bogomol™nyi, The Stability of Classical Solutions, Sov. J. Nucl. Phys. 24,
449 (1976)
15. R. Jackiw and P. Rossi, Zero Modes of the Vortex-Fermion System, Nucl. Phys.
B 252, 343 (1991)
16. E. Weinberg, Index Calculations for the Fermion-Vortex System, Phys. Rev. D
24, 2669 (1981)
17. C. Nash and S. Sen, Topology and Geometry for Physicists, Academic Press 1983
18. M. Nakahara, Geometry, Topology and Physics, Adam Hilger 1990
19. J. R. Munkres, Topology, Prentice Hall 2000
20. O. Jahn, Instantons and Monopoles in General Abelian Gauges, J. Phys. A33,
2997 (2000)
21. T. W. Gamelin and R. E. Greene, Introduction to Topology, Dover 1999
22. V. I. Arnold, B. A. Khesin, Topological Methods in Hydrodynamics, Springer
1998
23. D. J. Thouless, Topological Quantum Numbers in Nonrelativistic Physics, World
Scienti¬c 1998
24. N. Steenrod, The Topology of Fiber Bundels, Princeton University Press 1951
25. G. Morandi, The Role of Topology in Classical and Quantum Physics, Springer
1992
26. W. Miller, Jr., Symmetry Groups and Their Applications, Academic Press 1972
27. N. D. Mermin, The Topological Theory of Defects in Ordered Media, Rev. Mod.
Phys. 51, 591 (1979)
28. V. P. Mineev, Topological Objects in Nematic Liquid Crystals, Appendix A,
in: V. G. Boltyanskii and V. A. Efremovich, Intuitive Combinatorial Topology,
Springer 2001
29. S. Chandrarsekhar, Liquid Crystals, Cambridge University Press 1992
30. P. G. de Gennes and J. Prost, The Physics of Liquid Crystals, Clarendon Press
1993
31. P. Poulin, H. Stark, T. C. Lubensky and D.A. Weisz, Novel Colloidal Interactions
in Anisotropic Fluids, Science 275 1770 (1997)
32. H. Georgi and S. Glashow, Uni¬ed Weak and Electromagnetic Interactions with-
out Neutral Currents, Phys. Rev. Lett. 28, 1494 (1972)
33. H. Weyl, Gruppentheorie und Quantenmechanik, Hirzel Verlag 1928.
34. R. Jackiw, Introduction to the Yang“Mills Quantum Theory, Rev. Mod. Phys.
52, 661 (1980)
96 F. Lenz

35. F. Lenz, H. W. L. Naus and M. Thies, QCD in the Axial Gauge Representation,
Ann. Phys. 233, 317 (1994)
36. F. Lenz and S. W¨rlen, Compact variables and Singular Fields in QCD, in: at
o
the frontier of Particle Physics, handbook of QCD edited by M. Shifman, Vol. 2,
p. 762, World Scienti¬c 2001
37. G.™t Hooft, Magnetic Monopoles in Uni¬ed Gauge Models, Nucl. Phys. B 79, 276
(1974)
38. A.M. Polyakov, Particle Spectrum in Quantum Field Theory, JETP Lett. 20, 194
(1974); Isometric States in Quantum Fields, JETP Lett. 41, 988 (1975)
39. F. Lenz, H. W. L. Naus, K. Ohta, and M. Thies, Quantum Mechanics of Gauge
Fixing, Ann. Phys. 233, 17 (1994)
40. A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects,
Cambridge University Press 1994
41. S.L.Sondhi, S. M. Girvin, J. P. Carini, and D. Shahar, Continuous Quantum
Phase Transitions, Rev.Mod.Phys. 69 315, (1997)
42. R. Rajaraman, Solitons and Instantons, North Holland 1982
43. B. Julia and A. Zee, Poles with Both Electric and Magnetic Charges in Nonabelian
Gauge Theory, Phys. Rev. D 11, 2227 (1975)
44. E. Tomboulis and G. Woo, Soliton Quantization in Gauge Theories, Nucl. Phys.
B 107, 221 (1976); J. L. Gervais, B. Sakita and S. Wadia, The Surface Term in
Gauge Theories, Phys. Lett. B 63 B, 55 (1999)
45. C. Callias, Index Theorems on Open Spaces, Commun. Mat. Phys. 62, 213 (1978)
46. R. Jackiw and C. Rebbi, Solitons with Fermion Number 1/2, Phys. Rev. D 13,
3398 (1976)
47. R. Jackiw and C. Rebbi, Spin from Isospin in Gauge Theory, Phys. Rev. Lett.
36, 1116 (1976)
48. P. Hasenfratz and G. ™t Hooft, Fermion-Boson Puzzle in a Gauge Theory, Phys.
Rev. Lett. 36, 1119 (1976)
49. E. W. Kolb and M. S. Turner, The Early Universe, Addison-Wesley 1990
50. J. A. Peacock, Cosmological Physics, Cambridge University Press 1999
51. V. N. Gribov, Quantization of Non-Abelian Gauge Theories, Nucl. Phys. B 139,
1 (1978)
52. I. M. Singer, Some Remarks on the Gribov Ambiguity, Comm. Math. Phys. 60,
7 (1978)
53. T. T. Wu and C. N. Yang, Concept of Non-Integrable Phase Factors and Global
Formulations of Gauge Fields, Phys. Rev. D 12, 3845 (1975)
54. A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Yu. S. Tyupkin, Pseudoparticle
solutions of the Yang“Mills equations, Phys. Lett. B 59, 85 (1975)
55. J. D. Bjorken, in: Lectures on Lepton Nucleon Scattering and Quantum Chromo-
dynamics, W. Atwood et al. , Birkh¨user 1982
a
56. R. Jackiw, Topological Investigations of Quantized Gauge theories, in: Current
Algebra and Anomalies, edt. by S. Treiman et al., Princeton University Press,
1985
57. A. S. Schwartz, Quantum Field Theory and Topology, Springer 1993
58. M. B. Green, J. H. Schwarz and E. Witten, Superstring Theory, Vol. 2, Cambridge
University Press 1987
59. G. ™t Hooft, Computation of the Quantum E¬ects Due to a Four Dimensional
Quasiparticle, Phys. Rev. D 14, 3432 (1976)
60. G. Esposito, Dirac Operators and Spectral Geometry, Cambridge University Press
1998
Topological Concepts in Gauge Theories 97

61. T. Sch¨fer and E. V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70, 323 (1998)
a
62. C. G. Callan, R. F. Dashen and D. J. Gross, Toward a Theory of Strong Interac-
tions, Phys. Rev. D 17, 2717 (1978)
63. V. de Alfaro, S. Fubini and G. Furlan, A New Classical Solution Of The Yang“
Mills Field Equations, Phys. Lett. B 65, 163 (1976).
64. F. Lenz, J. W. Negele and M. Thies, Con¬nement from Merons, hep-th/0306105
to appear in Phys. Rev. D
65. H. K. Mo¬at and A. Tsinober, Helicity in Laminar and Turbulent Flow, Ann.
Rev. Fluid Mech. 24 281, (1992)
66. P. A. Davidson, An Introduction to Magnetohydrodynamics, Cambridge Univer-
sity Press, 2001
67. E. Witten, Some Geometrical Applications of Quantum Field Theory, in *Swansea
1988, Proceedings of the IX th International Congr. on Mathematical Physics,
p.77
68. L. H. Kau¬man, Knots and Physics, World Scienti¬c 1991
69. A. M. Polyakov, Fermi-Bose Transmutation Induced by Gauge Fields, Mod. Phys.
Lett. A 3, 325 (1988)
70. B. Svetitsky, Symmetry Aspects of Finite Temperature Con¬nement Transitions,
Phys. Rep. 132, 1 (1986)
71. D. J. Toms, Casimir E¬ect and Topological Mass, Phys. Rev. D 21, 928 (1980)
72. F. Lenz and M. Thies, Polyakov Loop Dynamics in the Center Symmetric Phase,
Ann. Phys. 268, 308 (1998)
73. J. I. Kapusta, Finite-temperature ¬eld theory, Cambridge University Press 1989
74. F. Lenz, H. W. L. Naus, K. Ohta, and M. Thies, Zero Modes and Displacement
Symmetry in Electrodynamics, Ann. Phys. 233, 51 (1994)
75. F. Lenz, J. W. Negele, L. O™Raifeartaigh and M. Thies, Phases and Residual
Gauge Symmetries of Higgs Models, Ann. Phys. 285, 25 (2000)
76. M. Le Bellac, Thermal ¬eld theory, Cambridge University Press 1996
77. H. Reinhardt, M. Engelhardt, K. Langfeld, M. Quandt, and A. Sch¨fke, Magnetic
a
Monopoles, Center Vortices, Con¬nement and Topology of Gauge Fields, hep-
th/ 9911145
78. J. Greensite, The Con¬nement Problem in Lattice Gauge Theory, hep-lat/
0301023
79. H. J. de Vega and F. A. Schaposnik, Electrically Charged Vortices in Non-Abelian
Gauge Theories, Phys. Rev. Lett. 56, 2564 (1986)
80. G. ™t Hooft, On the Phase Transition Towards Permanent Quark Con¬nement,
Nucl. Phys. B 138, 1 (1978)
81. S. Samuel, Topological Symmetry Breakdown and Quark Con¬nement, Nucl.
Phys. B 154, 62 (1979)
82. A. Kovner, Con¬nement, ZN Symmetry and Low-Energy E¬ective Theory of
Gluodynamicsagnetic, in: at the frontier of Particle Physics, handbook of QCD
edited by M. Shifman, Vol. 3, p. 1778, World Scienti¬c 2001
83. J. Fingberg, U. Heller, and F. Karsch, Scaling and Asymptotic Scaling in the
SU(2) Gauge Theory, Nucl. Phys. B 392, 493 (1993)
84. B. Grossman, S. Gupta, U. M. Heller, and F. Karsch, Glueball-Like Screening
Masses in Pure SU(3) at Finite Temperatures, Nucl. Phys. B 417, 289 (1994)
85. M. Ishii, H. Suganuma and H. Matsufuru, Scalar Glueball Mass Reduction at
Finite Temperature in SU (3) Anisotropic Lattice QCD, Phys. Rev. D 66, 014507
(2002); Glueball Properties at Finite Temperature in SU (3) Anisotropic Lattice
QCD, Phys. Rev. D 66, 094506 (2002)
98 F. Lenz

86. S. Rastogi, G. W. H¨hne and A. Keller, Unusual Pressure-Induced Phase Behavior
o
in Crystalline Poly(4-methylpenthene-1): Calorimetric and Spectroscopic Results
and Further Implications, Macromolecules 32 8897 (1999)
87. N. Avraham, B. Kayhkovich, Y. Myasoedov, M. Rappaport, H. Shtrikman,
D. E. Feldman, T. Tamegai, P. H. Kes, Ming Li, M. Konczykowski, Kees van
der Beek, and Eli Zeldov, ™ Inverse™ Melting of a Vortex Lattice, Nature 411, 451,
(2001)
88. F. Lenz, E. J. Moniz and M. Thies, Signatures of Con¬nement in Axial Gauge
QCD, Ann. Phys. 242, 429 (1995)
89. M. E. Peskin and D. V. Schroeder, An Introduction to Quantum Field Theory,
Addison-Wesley Publishing Company, 1995
90. T. Reisz, Realization of Dimensional Reduction at High Temperature, Z. Phys.
C 53, 169 (1992)
91. V. L. Eletsky, A. C. Kalloniatis, F. Lenz, and M. Thies, Magnetic and Thermo-
dynamic Stability of SU (2) Yang“Mills Theory, Phys. Rev. D 57, 5010 (1998)
92. F. Karsch, E. Laermann, and A. Peikert, The Pressure in 2, 2 + 1 and 3 Flavor
QCD, Phys. Lett. B 478, 447 (2000)
93. J. Engels, F. Karsch and K. Redlich, Scaling Properties of the Energy Density in
SU (2) Lattice Gauge Theory, Nucl. Phys. B435, 295 (1995)
94. N. Seiberg, E. Witten, Monopole Condensation, and Con¬nement in N = 2 Super-
symmetric QCD, Nucl. Phys. B 426, 19 (1994); Monopoles, Duality and Chiral
Symmetry Breaking in N = 2 supersymmetric QCD Nucl. Phys. B 431, 484 (1995)
95. M. Quandt, H. Reinhardt and A. Sch¨fke, Magnetic Monopoles and Topology of
a
Yang“Mills Theory in Polyakov Gauge, Phys. Lett. B 446, 290 (1999)
96. C. Ford, T. Tok and A. Wipf, SU (N ) Gauge Theories in Polyakov Gauge on the
Torus, Phys. Lett. B 456, 155 (1999)
97. O. Jahn and F. Lenz, Structure and Dynamics of Monopoles in Axial Gauge QCD,
Phys. Rev. D 58, 85006 (1998)
98. B. J. Harrington and H. K. Shepard, Periodic Euclidean Solutions and the Finite-
Temperature Yang“Mills Gas, Phys. Rev. D 17, 2122 (1978)
99. G. ™t Hooft, Topology of the Gauge Condition and New Con¬nement Phases in
Non-Abelian Gauge Theories, Nucl. Phys. B 190, 455 (1981)
100. J. Kogut and L. Susskind, Hamiltonian Formulation of Wilson™s Lattice Gauge
Theories, Phys. Rev. D 11, 395 (1975)
Aspects of BRST Quantization

J.W. van Holten

National Institute for Nuclear and High-Energy Physics (NIKHEF) P.O. Box 41882,
1009 DB Amsterdam, The Netherlands, and Department of Physics and Astronomy,
Faculty of Science, Vrije Universiteit Amsterdam


Abstract. BRST-methods provide elegant and powerful tools for the construction
and analysis of constrained systems, including models of particles, strings and ¬elds.
These lectures provide an elementary introduction to the ideas, illustrated with some
important physical applications.


1 Symmetries and Constraints
The time evolution of physical systems is described mathematically by di¬er-
ential equations of various degree of complexity, such as Newton™s equation
in classical mechanics, Maxwell™s equations for the electro-magnetic ¬eld, or
Schr¨dinger™s equation in quantum theory. In most cases these equations have
o
to be supplemented with additional constraints, like initial conditions and/or
boundary conditions, which select only one “ or sometimes a restricted subset “
of the solutions as relevant to the physical system of interest.
Quite often the preferred dynamical equations of a physical system are not
formulated directly in terms of observable degrees of freedom, but in terms of
more primitive quantities, such as potentials, from which the physical observables
are to be constructed in a second separate step of the analysis. As a result, the
interpretation of the solutions of the evolution equation is not always straight-
forward. In some cases certain solutions have to be excluded, as they do not
describe physically realizable situations; or it may happen that certain classes of

<<

. 21
( 78 .)



>>