<<

. 61
( 66 .)



>>

Asymptotic Analysis. Butterworth-Heinemann, Boston.
Lengyel, I., and Epstein, I. R. (1991). Diffusion-induced instability in
chemically reacting systems: steady-state multiplicity, oscillation, and
chaos. Chaos 1, 69--76.
Lengyel, I., and Epstein, I. R. (1992). A chemical approach to designing Turing
patterns in reaction--diffusion systems. Proc. Nat. Acad. Sci. USA 89, 3977--9.
Leonard, C. M., Fuld, H. M., Frenz, D. A., Downie, S. A., Massague, J., and
Newman, S. A. (1991). Role of transforming growth factor-β in
chondrogenic pattern formation in the embryonic limb: stimulation of
mesenchymal condensation and ¬bronectin gene expression by exogenous
REFERENCES 309


TGF-beta and evidence for endogenous TGF-β-like activity. Dev. Biol. 145,
99--109.
Lercher, M. J., Urrutia, A. O., and Hurst, L. D. (2002). Clustering of
housekeeping genes provides a uni¬ed model of gene order in the human
genome. Nat. Genet. 31, 180--3.
Leslie, P. H. (1948). Some further notes on the use of matrices in population
mathematics. Biometrika 35, 213--45.
Levi, G., Ginsberg, D., Girault, J. M., Sabanay, I., Thiery, J. P., and Geiger, B.
(1991). EP-cadherin in muscles and epithelia of Xenopus laevis embryos.
Development 113, 1335--44.
Lewis, J. (2003). Autoinhibition with transcriptional delay: a simple mechanism
for the zebra¬sh somitogenesis oscillator. Curr. Biol. 13, 1398--408.
Li, S., Piotrowicz, R. S., Levin, E. G., Shyy, Y. J., and Chien, S. (1996). Fluid
shear stress induces the phosphorylation of small heat shock proteins in
vascular endothelial cells. Am. J. Physiol. 271, C994--1000.
Li, S., Zhou, D., Lu, M. M., and Morrisey, E. E. (2004). Advanced cardiac
morphogenesis does not require heart tube fusion. Science 305, 1619--22.
Linsenmayer, T. F., Fitch, J. M., Gordon, M. K., Cai, C. X., Igoe, F., Marchant,
J. K., and Birk, D. E. (1998). Development and roles of collagenous matrices
in the embryonic avian cornea. Prog. Retin. Eye Res. 17, 231--65.
Lowery, L. A., and Sive, H. (2004). Strategies of vertebrate neurulation and a
re-evaluation of teleost neural tube formation. Mech. Dev. 121, 1189--97.
Lubarsky, B., and Krasnow, M. A. (2003). Tube morphogenesis: making and
shaping biological tubes. Cell 112, 19--28.
Lubkin, S. R., and Li, Z. (2002). Force and deformation on branching
rudiments: cleaving between hypotheses. Biomech. Model Mechanobiol. 1,
5--16.
Lucchetta, E. M., Lee, J. H., Fu, L. A., Patel, N. H., and Ismagilov, R. F. (2005).
Dynamics of Drosophila embryonic patterning network perturbed in space
and time using micro¬‚uidics. Nature 434, 1134--8.
Luo, Y., Kostetskii, I., and Radiche, G. L. (2005). N-cadherin is not essential for
limb mesenchymal chondrogenesis. Dev. Dyn. 232, 336--44.
Mandato, C. A., Benink, H. A., and Bement, W. M. (2000).
Microtubule-actomyosin interactions in cortical ¬‚ow and cytokinesis. Cell
Motil. Cytoskeleton 45, 87--92.
Mandelbrot, B. B. (1983). The Fractal Geometry of Nature. W. H. Freeman, New
York.
Maniatis, T., and Tasic, B. (2002). Alternative pre-mRNA splicing and
proteome expansion in metazoans. Nature 418, 236-- 43.
Manner, J. (2000). Cardiac looping in the chick embryo: a morphological
review with special reference to terminological and biomechanical aspects
of the looping process. Anat. Rec. 259, 248--62.
Mannervik, M., Nibu, Y., Zhang, H., and Levine, M. (1999). Transcriptional
coregulators in development. Science 284, 606--9.
Marom, K., Shapira, E., and Fainsod, A. (1997). The chicken caudal genes
establish an anterior--posterior gradient by partially overlapping temporal
and spatial patterns of expression. Mech. Dev. 64, 41--52.
Marsden, M., and DeSimone, D. W. (2003). Integrin-ECM interactions regulate
cadherin-dependent cell adhesion and are required for convergent
extension in Xenopus. Curr. Biol. 13, 1182--91.
Marshall, B. T., Long, M., Piper, J. W., Yago, T., McEver, R. P., and Zhu, C.
(2003). Direct observation of catch bonds involving cell-adhesion
molecules. Nature 423, 190--3.
310 REFERENCES


Martin, G. R. (1998). The roles of FGFs in the early development of vertebrate
limbs. Genes Dev. 12, 1571--86.
Martin, J. E., Adolf, D., and Wilcoxon, J. P. (1989). Rheology of the incipient
gel: theory and data for epoxies. Polym. Prepr. Am. Chem. Soc. Div. Polym.
Chem. 30, 83--84.
Martin, V. J., Little¬eld, C. L., Archer, W. E., and Bode, H. R. (1997).
Embryogenesis in hydra. Biol. Bull. 192, 345--63.
Maynard Smith, J. (1978). Models in Ecology. Cambridge University Press,
Cambridge, New York.
Mayr, E. (1982). The Growth of Biological Thought: Diversity, Evolution, and
Inheritance. Belknap Press, Cambridge, MA.
McCarthy, R. A., and Hay, E. D. (1991). Collagen I, laminin, and tenascin:
ultrastructure and correlation with avian neural crest formation. Int. J.
Dev. Biol. 35, 437--52.
McDougall, A., Shearer, J., and Whitaker, M. (2000). The initiation and
propagation of the fertilization wave in sea urchin eggs. Biol. Cell. 92,
205--14.
McDowell, N., Gurdon, J. B., and Grainger, D. J. (2001). Formation of a
functional morphogen gradient by a passive process in tissue from the
early Xenopus embryo. Int. J. Dev. Biol. 45, 199--207.
McKim, K. S., Jang, J. K., and Manheim, E. A. (2002). Meiotic recombination
and chromosome segregation in Drosophila females. Ann. Rev. Genet. 36,
205--32.
McLaren, A. (1984). Meiosis and differentiation of mouse germ cells. Symp.
Soc. Exp. Biol. 38, 7--23.
Medalia, O., Weber, I., Frangakis, A. S., Nicastro, D., Gerisch, G., and
Baumeister, W. (2002). Macromolecular architecture in eukaryotic cells
visualized by cryoelectron tomography. Science 298, 1209--13.
Meek, K. M., and Fullwood, N. J. (2001). Corneal and scleral collagens -- a
microscopist™s perspective. Micron 32, 261--72.
Meier, S. (1984). Somite formation and its relationship to metameric
patterning of the mesoderm. Cell Differ. 14, 235--43.
Meinhardt, H. (1982). Models of Biological Pattern Formation. Academic Press,
New York.
Meinhardt, H. (2001). Organizer and axes formation as a self-organizing
process. Int. J. Dev. Biol. 45, 177--88.
Meinhardt, H., and Gierer, A. (2000). Pattern formation by local
self-activation and lateral inhibition. Bioessays 22, 753--60.
Meir, E., von Dassow, G., Munro, E., and Odell, G. M. (2002). Robustness,
¬‚exibility, and the role of lateral inhibition in the neurogenic network.
Curr. Biol. 12, 778--86.
Melnick, M., and Jaskoll, T. (2000). Mouse submandibular gland
morphogenesis: a paradigm for embryonic signal processing. Crit. Rev. Oral
Biology and Medicine 11, 199--215.
Merks, R. M. H., Newman, S. A., and Glazier, J. A. (2004). Cell-oriented
modeling of in vitro capillary development. In Cellular Automata: Proc. 6th
International Conf. on Cellular Automata for Research and Industry (P. M. A.
Sloot, B. Chopard, and A. G. Hoekstra, eds.), pp. 425--34. Springer-Verlag,
Amsterdam, The Netherlands.
Metropolis, N., Rosenbluth, M. N., Rosenbluth, A., Teller, H., and Teller, E.
(1953). Equations of state calculations by fast computing machines.
J. Chem. Phys. 21, 1087--91.
REFERENCES 311


Minelli, A. (2003). The Development of Animal Form: Ontogeny, Morphology, and
Evolution. Cambridge University Press, Cambridge, New York.
Minelli, A., and Fusco, G. (2004). Evo-devo perspectives on segmentation:
model organisms, and beyond. Trends Ecol. Evol. 19, 423--9.
Miranti, C. K., and Brugge, J. S. (2002). Sensing the environment: a
historical perspective on integrin signal transduction. Nat. Cell. Biol. 4,
E83--E90.
Misteli, T. (2001). Protein dynamics: implications for nuclear architecture
and gene expression. Science 291, 843--7.
Mittenthal, J. E., and Mazo, R. M. (1983). A model for shape generation by
strain and cell--cell adhesion in the epithelium of an arthropod leg
segment. J. Theor. Biol. 100, 443--83.
Miura, T., and Maini, P. K. (2004). Speed of pattern appearance in
reaction--diffusion models: implications in the pattern formation of limb
bud mesenchyme cells. Bull. Math. Biol. 66, 627--49.
Miura, T., and Shiota, K. (2000a). Extracellular matrix environment
in¬‚uences chondrogenic pattern formation in limb bud micromass
culture: experimental veri¬cation of theoretical models. Anat. Rec. 258,
100--7.
Miura, T., and Shiota, K. (2000b). TGFβ2 acts as an ˜˜activator” molecule in
reaction--diffusion model and is involved in cell sorting phenomenon in
mouse limb micromass culture. Dev. Dyn. 217, 241--9.
Miura, T., and Shiota, K. (2000c). Time-lapse observation of branching
morphogenesis of the lung bud epithelium in mesenchyme-free culture
and its relationship with the localization of actin ¬laments. Int. J. Dev. Biol.
44, 899--902.
Miura, T., Komori, M., and Shiota, K. (2000). A novel method for analysis of
the periodicity of chondrogenic patterns in limb bud cell culture:
correlation of in vitro pattern formation with theoretical models. Anat.
Embryol. (Berlin) 201, 419--28.
Miyazaki, S., Shirakawa, H., Nakada, K., and Honda, Y. (1993). Essential role
of the inositol 1,4,5-trisphosphate receptor/Ca2+ release channel in Ca2+
waves and Ca2+ oscillations at fertilization of mammalian eggs. Dev. Biol.
158, 62--78.
Mlodzik, M. (2002). Planar cell polarization: do the same mechanisms
regulate Drosophila tissue polarity and vertebrate gastrulation? Trends Genet.
18, 564--71.
Moftah, M. Z., Downie, S. A., Bronstein, N. B., Mezentseva, N., Pu, J., Maher,
P. A., and Newman, S. A. (2002). Ectodermal FGFs induce perinodular
inhibition of limb chondrogenesis in vitro and in vivo via FGF receptor 2.
Dev. Biol. 249, 270--82.
Mombach, J. C., Glazier, J. A., Raphael, R. C., and Zajac, M. (1995).
Quantitative comparison between differential adhesion models and cell
sorting in the presence and absence of ¬‚uctuations. Phys. Rev. Lett. 75,
2244--7.
Monk, N. A. (2003). Oscillatory expression of Hes1, p53, and NF-kappaB driven
by transcriptional time delays. Curr. Biol. 13, 1409--13.
Montalta-He, H., and Reichert, H. (2003). Impressive expressions: developing
a systematic database of gene-expression patterns in Drosophila
embryogenesis. Genome Biol. 4, 205.
Montero, J. A., and Heisenberg, C. P. (2003). Adhesive crosstalk in
gastrulation. Dev. Cell 5, 190--1.
312 REFERENCES


Morisco, C., Seta, K., Hardt, S. E., Lee, Y., Vatner, S. F., and Sadoshima, J.
(2001). Glycogen synthase kinase 3β regulates GATA4 in cardiac myocytes.
J. Biol. Chem. 276, 28 586--97.
Morrison, S. J., Perez, S. E., Qiao, Z. et al. (2000). Transient Notch activation
initiates an irreversible switch from neurogenesis to gliogenesis by neural
crest stem cells. Cell 101, 499--510.
Muratov, C. B. (1997). Synchronization, chaos, and the breakdown of the
collective domain oscillations in reaction--diffusion systems. Phys. Rev.
E 55, 1463--77.
Murray, A. W., and Hunt, T. (1993). The Cell Cycle: An Introduction. W. H.
Freeman, New York.
Murray, A. W., and Kirschner, M. W. (1989). Dominoes and clocks: the union
of two views of the cell cycle. Science 246, 614--21.
Murray, J. D. (2002). Mathematical biology. Springer, New York.
Nagafuchi, A., and Takeichi, M. (1988). Cell binding function of E-cadherin is
regulated by the cytoplasmic domain. EMBO J. 7, 3679--84.
Nagar, B., Overduin, M., Ikura, M., and Rini, J. M. (1996). Structural basis of
calcium-induced E-cadherin rigidi¬cation and dimerization. Nature 380,
360--4.
Nagata, W., Harrison, L. G., and Wehner, S. (2003). Reaction--diffusion models
of growing plant tips: bifurcations on hemispheres. Bull. Math. Biol. 65,
571--607.
Nakanishi, Y., Morita, T., and Nogawa, H. (1987). Cell proliferation is not
required for the initiation of early cleft formation in mouse embryonic
submandibular epithelium in vitro. Development 99, 429--37.
Nakatsuji, N., Snow, M. H., and Wylie, C. C. (1986). Cinemicrographic study
of the cell movement in the primitive-streak-stage mouse embryo. J.
Embryol. Exp. Morphol. 96, 99--109.
Nakayama, T., Yakubo, K., and Orbach, R. (1994). Dynamical properties of
fractal networks: scaling, numerical simulations and physical realizations.
Rev. Mod. Phys. 66, 381--443.
Nanjundiah, V. (2005). Mathematics and biology. Current Science 88, 388--93.
Narbonne, G. M. (2004). Modular construction of early Ediacaran complex
life forms. Science 305, 1141--4.
Needham, D., and Hochmuth, R. M. (1992). A sensitive measure of surface
stress in the resting neutrophil. Biophys. J. 61, 1664--70.
Neff, A. W., Malacinski, G. M., Wakahara, M., and Jurand, A. (1983). Pattern
formation in amphibian embryos prevented from undergoing the classical
˜˜rotation response” to egg activation. Dev. Biol. 97, 103--12.
Neff, A. W., Wakahara, M., Jurand, A., and Malacinski, G. M. (1984).
Experimental analyses of cytoplasmic rearrangements which follow
fertilization and accompany symmetrization of inverted Xenopus eggs. J.
Embryol. Exp. Morphol. 80, 197--224.
Newgreen, D. F. (1989). Physical in¬‚uences on neural crest cell migration in
avian embryos: contact guidance and spatial restriction. Dev. Biol. 131,
136--48.
Newgreen, D. F., and Minichiello, J. (1995). Control of epitheliomesenchymal
transformation. I. Events in the onset of neural crest cell migration are
separable and inducible by protein kinase inhibitors. Dev. Biol. 170, 91--101.
Newman, S. A. (1977). Lineage and pattern in the developing wing bud. In
Vertebrate Limb and Somite Morphogenesis (D. A. Ede, J. R. Hinchliffe, and M.
Balls, eds.), pp. 181--97. Cambridge University Press, Cambridge.
REFERENCES 313


Newman, S. A. (1988). Lineage and pattern in the developing vertebrate limb.
Trends Genet. 4, 329--32.
Newman, S. A. (1993). Is segmentation generic? BioEssays 15, 277--83.
Newman, S. A. (1994). Generic physical mechanisms of tissue morphogenesis:
a common basis for development and evolution. J. Evol. Biol. 7, 467--88.
Newman, S. A. (1995). Interplay of genetics and physical processes of tissue
morphogenesis in development and evolution: the biological ¬fth
dimension. In ˜˜Interplay of Genetic and Physical Processes in the Development of
Biological Form (D. Beysens, G. Forgacs, and F. Gaill, eds.), pp. 3--12. World
Scienti¬c, Singapore.
Newman, S. A. (1998a). Epithelial morphogenesis: a physico-evolutionary
interpretation. In Molecular Basis of Epithelial Appendage Morphogenesis (C.-M.
Chuong, ed.), pp. 341--58. R. G. Landes, Austin, TX.
Newman, S. A. (1998b). Networks of extracellular ¬bers and the generation
of morphogenetic forces. In Dynamical Networks in Physics and Biology
(D. Beysens and G. Forgacs, eds.), pp. 139--48. Springer-Verlag, Berlin.
Newman, S. A. (2003a). The fall and rise of systems biology. GeneWatch 16,
8--12.
Newman, S. A. (2003b). From physics to development: the evolution of
morphogenetic mechanisms. In Origination of Organismal Form: Beyond the
Gene in Developmental and Evolutionary Biology. (G. B. M¨ ller and S. A.
u
Newman, eds.), pp. 221--39. MIT Press, Cambridge, MA.
Newman, S. A., and Comper, W. D. (1990). ˜˜Generic” physical mechanisms of
morphogenesis and pattern formation. Development 110, 1--18.
Newman, S. A., and Frisch, H. L. (1979). Dynamics of skeletal pattern
formation in developing chick limb. Science 205, 662--8.
Newman, S. A., and M¨ ller, G. B. (2000). Epigenetic mechanisms of character
u
origination. J. Exp. Zool. (Mol. Evol. Dev.) 288, 304--17.
Newman, S. A., and M¨ ller, G. B. (eds.) (2003). Origination of Organismal Form:
u
Beyond the Gene in Developmental and Evolutionary Biology. MIT Press,
Cambridge, MA.
Newman, S. A., and Tomasek, J. J. (1996). Morphogenesis of connective tissues.
In Extracellular Matrix (W. D. Comper, ed.), Vol. 2, Molecular Components and

<<

. 61
( 66 .)



>>