<<

. 64
( 66 .)



>>

Valentine, J. W. (2004). On the Origin of Phyla. University of Chicago Press,
Chicago.
Valinsky, J. E., and Le Douarin, N. M. (1985). Production of plasminogen
activator by migrating cephalic neural crest cells. EMBO J. 4, 1403--6.
Van Obberghen-Schilling, E., Roche, N. S., Flanders, K. C., Sporn, M. B., and
Roberts, A. (1988). Transforming growth factor β1 positively regulates
its own expression in normal and transformed cells. J. Biol. Chem. 263,
7741--6.
Van Oss, C. J., Gillman, C. F., and Neumann, A. W. (1975). Phagocytic
Engulfment and Cell Adhesiveness. Marcel Dekker, New York.
Veis, A., and George, A. (1994). Fundamentals of interstitial collagen
self-assembly. In Extracellular Matrix Assembly and Function (P. D. Yurchenco,
D. E. Birk, and R. P. Mecham, eds.), pp. 15--45. Academic Press, San Diego.
Verheul, H. M., Voest, E. E., and Schlingemann, R. O. (2004). Are tumours
angiogenesis-dependent? J. Pathol. 202, 5--13.
Vermot, J., and Pourqui´, O. (2005). Retinoic acid coordinates somitogenesis
e
and left--right patterning in vertebrate embryos. Nature 435, 215--20.
Vermot, J., Llamas, J. G., Fraulob, V., Niederreither, K., Chambon, P., and
Dolle, P. (2005). Retinoic acid controls the bilateral symmetry of somite
formation in the mouse embryo. Science 308, 563--6.
Vernon, G. G., and Woolley, D. M. (1995). The propagation of a zone of
activation along groups of ¬‚agellar doublet microtubules. Exp. Cell Res.
220, 482--94.
Vernon, R. B., Angello, J. C., Iruela-Arispe, M. L., Lane, T. F., and Sage, E. H.
(1992). Reorganization of basement membrane matrices by cellular
traction promotes the formation of cellular networks in vitro. Lab. Invest.
66, 536--47.
324 REFERENCES


Vernon, R. B., Lara, S. L., Drake, C. J., et al. (1995). Organized type I collagen
in¬‚uences endothelial patterns during ˜˜spontaneous angiogenesis
in vitro”: planar cultures as models of vascular development. In Vitro Cell
Dev. Biol. Anim. 31, 120--31.
Vilar, J. M., Kueh, H. Y., Barkai, N., and Leibler, S. (2002). Mechanisms of
noise resistance in genetic oscillators. Proc. Nat. Acad. Sci. USA 99, 5988--92.
von Dassow, G., and Munro, E. (1999). Modularity in animal development
and evolution: elements of a conceptual framework for EvoDevo. J. Exp.
Zool. (Mol. Dev. Evol.) 285, 307--25.
von Dassow, G., Meir, E., Munro, E. M., and Odell, G. M. (2000). The segment
polarity network is a robust developmental module. Nature 406, 188--92.
von Hippel, P. H., and Berg, O. G. (1989). Facilitated target location in
biological systems. J. Biol. Chem. 264, 675--8.
Voronov, D. A., and Taber, L. A. (2002). Cardiac looping in experimental
conditions: effects of extraembryonic forces. Dev. Dyn. 224, 413--21.
Voronov, D. A., Alford, P. W., Xu, G., and Taber, L. A. (2004). The role of
mechanical forces in dextral rotation during cardiac looping in the chick
embryo. Dev. Biol. 272, 339--50.
Waddington, C. H. (1942). Canalization of development and the inheritance
of acquired characters. Nature 150, 563--5.
Wagner, G. P., and Altenberg, L. (1996). Complex adaptations and the
evolution of evolvability. Evolution 50, 967--6.
Wakamatsu, Y., Maynard, T. M., and Weston, J. A. (2000). Fate determination
of neural crest cells by NOTCH-mediated lateral inhibition and
asymmetrical cell division during gangliogenesis. Development 127, 2811--21.
Wakely, J., and England, M. A. (1977). Scanning electron microscopy (SEM) of
the chick embryo primitive streak. Differentiation 7, 181--6.
Wallingford, J. B., and Harland, R. M. (2002). Neural tube closure requires
Dishevelled-dependent convergent extension of the midline. Development
129, 5815--25.
Wang, N., and Stamenovic, D. (2000). Contribution of intermediate ¬laments
to cell stiffness, stiffening, and growth. Am. J. Physiol. Cell Physiol. 279,
C188--94.
Wang, N., Butler, J. P., and Ingber, D. E. (1993). Mechanotransduction across
the cell surface and through the cytoskeleton. Science 260, 1124--7.
Wassarman, P., Chen, J., Cohen, N., Litscher, E., Liu, C., Qi, H., and Williams,
Z. (1999). Structure and function of the mammalian egg zona pellucida. J.
Exp. Zool. 285, 251--8.
Wassarman, P. M. (1999). Mammalian fertilization: molecular aspects of
gamete adhesion, exocytosis, and fusion. Cell 96, 175--83.
Waters, C. M., Oberg, K. C., Carpenter, G., and Overholser, K. A. (1990). Rate
constants for binding, dissociation, and internalization of EGF: effect of
receptor occupancy and ligand concentration. Biochemistry 29, 3563--9.
Wearing, H. J., Owen, M. R., and Sherratt, J. A. (2000). Mathematical
modelling of juxtacrine patterning. Bull. Math. Biol. 62, 293--320.
Webb, S. D., and Owen, M. R. (2004). Oscillations and patterns in spatially
discrete models for developmental intercellular signalling. J. Math. Biol. 48,
444--76.
Weidinger, G., Wolke, U., Koprunner, M., Thisse, C., Thisse, B., and Raz, E.
(2002). Regulation of zebra¬sh primordial germ cell migration by
attraction towards an intermediate target. Development 129, 25--36.
REFERENCES 325


Weng, W., and Stemple, D. L. (2003). Nodal signaling and vertebrate germ
layer formation. Birth Defects Res. Part C Embryo Today 69, 325--32.
Wessel, G. M., and McClay, D. R. (1987). Gastrulation in the sea urchin
embryo requires the deposition of crosslinked collagen within the
extracellular matrix. Dev. Biol. 121, 149--65.
West-Eberhard, M. J. (2003). Developmental Plasticity and Evolution. Oxford
University Press, Oxford, New York.
Wheelock, M. J., and Johnson, K. R. (2003). Cadherins as modulators of
cellular phenotype. Ann. Rev. Cell Dev. Biol. 19, 207--35.
White, J. G., and Borisy, G. G. (1983). On the mechanisms of cytokinesis in
animal cells. J. Theor. Biol. 101, 289--316.
Wikramanayake, A. H., Huang, L., and Klein, W. H. (1998). beta-Catenin is
essential for patterning the maternally speci¬ed animal--vegetal axis in
the sea urchin embryo. Proc. Nat. Acad. Sci. USA 95, 9343--8.
Wilkins, A. S. (1992). Genetic analysis of animal development. Wiley-Liss, New
York.
Wilkins, A. S. (1997). Canalization: a molecular genetic perspective. BioEssays
19, 257--62.
Wilkins, A. S. (2002). The Evolution of Developmental Pathways. Sinauer
Associates, Sunderland, MA.
Williams, A. F., and Barclay, A. N. (1988). The immunoglobulin superfamily --
domains for cell surface recognition. Ann. Rev. Immunol. 6, 381--405.
Wilson, P. D. (2004). Polycystic kidney disease: new understanding in the
pathogenesis. Int. J. Biochem. Cell Biol. 36, 1868--73.
Wimmer, E. A., Carleton, A., Harjes, P., Turner, T., and Desplan, C. (2000).
Bicoid-independent formation of thoracic segments in Drosophila. Science
287, 2476--9.
Winther, R. G. (2001). Varieties of modules: kinds, levels, origins, and
behaviors. J. Exp. Zool. 291, 116--29.
Wolf, D. M., and Eeckman, F. H. (1998). On the relationship between genomic
regulatory element organization and gene regulatory dynamics. J. Theor.
Biol. 195, 167--86.
Wolf, J., and Heinrich, R. (1997). Dynamics of two-component biochemical
systems in interacting cells; synchronization and desynchronization of
oscillations and multiple steady states. Biosystems 43, 1--24.
Wolfram, S. (2002). A New Kind of Science. Wolfram Media, Champaign, IL.
Wolpert, L. (1969). Positional information and the spatial pattern of cellular
differentiation. J. Theor. Biol. 25, 1--47.
Wolpert, L. (2002). Principles of Development. Oxford University Press, Oxford,
New York.
Wong, G. K., Allen, P. G., and Begg, D. A. (1997). Dynamics of ¬lamentous
actin organization in the sea urchin egg cortex during early cleavage
divisions: implications for the mechanism of cytokinesis. Cell Motil.
Cytoskeleton 36, 30--42.
Woolley, D. M., and Vernon, G. G. (2002). Functional state of the axonemal
dyneins during ¬‚agellar bend propagation. Biophys. J. 83, 2162--9.
Wylie, C. C., and Heasman, J. (1993). Migration, proliferation, and potency of
primordial germ cells. Seminars in Dev. Biol. 4, 161--170.
Xiao, S., and Knoll, A. H. (2000). Phosphatized animal embryos from the
Neoproterozoic Doushantuo Formation in Weng™an, Guizhou, South
China. Paleontology 74, 767--88.
326 REFERENCES


Xiao, S., Yuan, X., and Knoll, A. H. (2000). Eumetazoan fossils in terminal
Proterozoic phosphorites? Proc. Nat. Acad. Sci. USA 97, 13 684--9.
Xu, Z., and Tung, V. W. (2001). Temporal and spatial variations in slow
axonal transport velocity along peripheral motoneuron axons. Neuroscience
102, 193--200.
Yamada, S., Wirtz, D., and Kuo, S. C. (2000). Mechanics of living cells
measured by laser tracking microrheology. Biophys. J. 78, 1736--47.
Yamamoto, K., and Yoneda, M. (1983). Cytoplasmic cycle in meiotic division
of star¬sh oocytes. Dev. Biol. 96, 166--72.
Yamamoto, M., Saijoh, Y., Perea-Gomez, A., et al. (2004). Nodal antagonists
regulate formation of the anteroposterior axis of the mouse embryo.
Nature 428, 387--92.
Yanagimachi, R., and Noda, Y. D. (1970). Electron microscope studies of
sperm incorporation into the golden hamster egg. Am. J. Anat. 128, 429--62.
Yoneda, M. (1973). Tension at the surface of sea urchin eggs on the basis of
˜˜liquid-drop” concept. Adv. Biophys. 4, 153--90.
Yoshida, M., Inaba, K., and Morisawa, M. (1993). Sperm chemotaxis during
the process of fertilization in the ascidians Ciona savignyi and Ciona
intestinalis. Dev. Biol. 157, 497--506.
Yurchenco, P. D., and O™Rear, J. J. (1994). Basal lamina assembly. Curr. Opin.
Cell. Biol. 6, 674--681.
Zachariae, W., and Nasmyth, K. (1999). Whose end is destruction: cell
division and the anaphase-promoting complex. Genes Dev. 13, 2039--58.
Zahalak, G. I., Wagenseil, J. E., Wakatsuki, T., and Elson, E. L. (2000). A
cell-based constitutive relation for bio-arti¬cial tissues. Biophys. J. 79,
2369--81.
Zajac, M., Jones, G. L., and Glazier, J. A. (2000). Model of convergent
extension in animal morphogenesis. Phys. Rev. Lett. 85, 2022--5.
Zajac, M., Jones, G. L., and Glazier, J. A. (2003). Simulating convergent
extension by way of anisotropic differential adhesion. J. Theor. Biol. 222,
247--59.
Zeng, W., Thomas, G. L., Newman, S. A., and Glazier, J. A. (2003). A novel
mechanism for mesenchymal condensation during limb chondrogenesis in
vitro. In Mathematical Modelling and Computing in Biology and Medicine, Proc.
Fifth ESMTB Conf 2002 (V. Capasso, ed.), pp. 80--6. Società Editrice Esculapio,
Bologna, Italy.
Zhang, J., Houston, D. W., King, M. L., Payne, C., Wylie, C., and Heasman, J.
(1998). The role of maternal VegT in establishing the primary germ layers
in Xenopus embryos. Cell 94, 515--24.
Index


absolute temperature 9, 139, 180 Aristotle 1 blastomere 28, 99, 128--130, 159
acrosome (acrosomal vesicle) 228, asters 25, 41 nuclei 53--57, 58
astral signal 41 blastopore 131, 156, 178
233
reaction 228 distance between 42 rostral lip of 167, 178
blastula 24, 29, 30, 51, 178
actin 9, 25, 244 distance from cortex 40, 41
cortical 36, 37, 38, 40--43, 243 mitotic spindle 40 formation 24, 27, 41, 43--49, 50, 51,
astral signal 40, 41, 243 58, 224, see also cleavage
cytoskeleton 12, 80, 243
density of 36 attractor, see ¬xed point Drasdo--Forgacs model of 43
¬ber 38, 39--49 autocrine, see signaling hollow 51, 58
¬lament (micro¬lament, F-actin) 7, autoregulatory 65 manifestation of multicellularity
25, 26, 41, 43--49, 114, 205, 244 loop of TGF-β production 213 77, 92
in actomyosin gel 245 network of transcription factors mechanical properties 44
in postfertilization 243 69, 110, 125, 165, 261 morphogenetic structure 43
monomer (G-actin) 9, 84 axes, embryonic Nieuwkoop center 182
myosin complex 157 anteroposterior axis 118, 123, 178 polarized cells in 79
network 128, 245 dorsoventral axis 178 spherical 49
sol--gel transition in 245 formation of primary axis 162, 177 unstable 49
activator reassigned in Xenopus 178 blood vessel formation, see
in reaction--diffusion systems 161, rostrocaudal axis 178 vasculogenesis
181 axon 16 body cavities 250
transcriptional 65 body plans 188, 189, 205
active transport, see transport bacteria 14 of metazoa 250
active zone, see vertebrate limb coasting 20 physical origin of 252--256
actomyosin gel 244, 247 basal lamina 78, 80, 105, 110, 122, Boltzmann™s constant 9
adenosine triphosphate (ATP) 8, 13, 213, 251 bone 132, 134, 138, 143, 151, 188, 211
228 basin of attraction 57, 64, 69, 76, Bone Morphogenetic Protein (BMP)
adherens junction, see cell junctions 116 125, see also morphogen
adhesion molecule, see cell adhesion Bateson, W. 163 branching morphogenesis 205, see
molecule beetle 260 also salivary gland
aggregate 29 Bell equation 88 morphogenesis
embryo as 30 Bell model 84--90 Brownian motion 9, 11
multicellular 29 bending energy 101, see also Bussolino et al. model for
spheroid 29 Mittenthal--Mazo model vasculogenesis 199--203, 205
allantois 224 bending rigidity (bending stiffness)
amphipathic molecules 39, 83 39, 46 cadherin, see cell adhesion molecule
calcium ion Ca2+ 237, 238, see also
anaphase-promoting factor (APC) 63 beetle 256
angioblast 194 bifurcation 60 fertilized egg
Ca2+ release induced by Ca2+
angiogenesis 196--197 Hopf 59--63, 258
animal cap (of frog blastula) 172 Turing 258 intracellular stores of 237, 238, 239
animal--vegetal axis (amphibian binary mixture of cells 91 in signaling 239
blastula) 177 binding af¬nity 67 saltatory 241
anomalous diffusion, see diffusion blastocoel 27, 99, 110, 111, 112, 131 calcium ion channel 240
aorta 190, 194 ¬‚oor 224 calcium ion oscillation in egg 240
apical ectodermal ridge (AER) 213, ¬‚uid 100 calcium ion waves
216, 218 internal cavity 110 in postfertilization egg 236--241,
apical contraction, see cell wall 131 242--247
apical zone, see vertebrate limb blastoderm reaction--diffusion (FDF) model for
archenteron 117, 131, 189 de¬nition of 27 239--241
area expansivity modulus 38 Drosophila 256 saltatory 241
328 INDEX


cell cycle 25, 26, 254 checkpoint 57--63
Cambrian explosion 250
in cell cycle 57--63
canalization (canalizing selection) and cell state
and cell surface tension 37 Cheer et al. postfertilization
263, 268
and surface contractions in egg mechanochemical model 245
capillaries 190
chemical equilibrium 54
cardiac looping 191, 193 243
as component of two-oscillator chemical wave 223, 234, see also
cardiovascular system
calcium ion wave
development 190--203 pattern formation systems
cartilage 134, 150, 188, 211, 213 160, 165 chemoattractant, see also morphogen
during cleavage 57--63 gradient of 202
Cdc 2 58, 60, 63
in Kaneko--Yomo model 73, 75 chemokinesis 157
cell 7
apical contraction of 114--115 in sea urchin gastrulation 110 chemotaxis 15, 135, 157, see also
compressibility of 45 pattern formation 158 bacteria, coasting
regulatory proteins in egg 227 chicken
contraction of 156, 157, 188
cardiac looping 191, 199
daughters (progeny) 57, 64 time of 20, 46--47
egg 228
diploid 27 cell detachment 134
electical excitability 156, 188 cell division 24, 26, see also mitosis limb development 213
eukaryotic 6, 15, 251 and meiosis neural retina 70
follicle 227 early 24 somitic oscillator 163
late 27 symmetry breaking in primary
haploid 225

<<

. 64
( 66 .)



>>