<<

. 35
( 51 .)



>>

be especially vulnerable to both organizing and disorganizing in¬‚uences. These
in¬‚uences on the fetus have been described as programming, a process by which a
stimulus or insult during a critical developmental period has a long-lasting or per-
manent in¬‚uence (Nathanielsz, 1999). Animal models illustrate that maternal
stress has programming in¬‚uences on development that persist not only through
adulthood, but may have transgenerational effects (Francis et al., 1999).
The human fetus is sensitive to the effects of maternal stress and furthermore,
these in¬‚uences can be measured. Our program of research indicates that maternal
activation of the HPA axis is associated with adverse birth outcomes and altered
fetal responsiveness to stimulation. Additionally, prenatal stress and exposure to
stress hormones has deleterious consequences for the developing infant. We have
shown that while birth outcomes such as premature delivery can contribute to
developmental impairments, stress and stress hormones have an independent
effect on development. Our current projects extend these ¬ndings to understand
the in¬‚uence of the timing of stress on the fetus, the biological processes associated
with stress and the pre- and postnatal developmental consequences of prenatal stress.
One objective is to extend our ability to predict adverse outcomes such as pre-
mature birth. The magnitude of the effect of prenatal stress is comparable to that
of other established obstetric risk factors. The speci¬city and sensitivity of these
measures as predictors of adverse outcome(s) in any individual pregnancy is mod-
est. For example, low levels of placental CRH in pregnancy are a good negative
195 In¬‚uence of stress in human fetal and infant development


predictor of preterm birth but high levels are a poor positive predictor. This may
suggest that parameters such as stress and placental CRH should be considered in
conjunction with other risk factors.
In addition to the maternal“placental“fetal neuroendocrine processes discussed
above, host (maternal and/or fetal) proin¬‚ammatory immune responses produced
by intrauterine or reproductive tract infection have been implicated in adverse
fetal outcomes, especially extreme prematurity ( 30 weeks gestation) and white
matter brain damage (Romero et al., 2001). Although psychosocial stress is a well-
established contributor to the risk of infection and its pathophysiological conse-
quences (Cohen et al., 1999) and the endocrine and immune systems are known
to extensively regulate and counter-regulate one another (McEwen et al., 1997; Shanks
and Lightman, 2001; Elenkov and Chrousos, 2002), very little empirical work has
been done to date to examine these interactions in the context of stress in preg-
nancy and fetal development. Thus, one of our current, ongoing studies is designed
to examine psychoneuroendocrine“immune interactions in human pregnancy, to
explore the hypothesis that maternal psychosocial stress and neuroendocrine stress
responses may play a role in determining susceptibility to the development of
reproductive tract infection and its pathophysiological consequences. We suggest this
is a critical future direction for this work as the effect of either of these processes
on a biological outcome of interest is modulated by the state/context of the other.
Returning to the concept of an epigenetic framework of development, it appears
that embryonic and fetal developmental processes ultimately represent the dynamic
interplay between two sets of information systems, fetal and maternal deoxyribo-
nucleic acid (DNA) and the fetal and maternal environments. Genetic predisposi-
tions may make some pregnancies more vulnerable to environmental in¬‚uences.
We are not aware of any studies to date that have systematically examined the phys-
iological genomics of maternal and fetal stress-related neuroendocrine systems
and pathways in human pregnancy, and suggest this is yet another important
future avenue for this line of research.
In conclusion, there is a compelling need to arrive at a better understanding of
the determinants of individual differences in psychoneuroendocrine processes that
underlie health and disease. The study of the interplay between biological and
behavioral processes in fetal life, using a dynamic systems approach, holds great
promise for our efforts to arrive at this understanding.



R E F E R E N C ES


Abbasi, S., Hirsch, D., Davis, J. et al. (2000). Effect of single versus multiple courses of antenatal
corticosteroids on maternal and neonatal outcome. Am. J. Obstet. Gynecol., 182(5), 1243“9.
196 E. P. Davis et al.


Antonow-Schlorke, I., Schwab, M., Li, C. and Nathanielsz, P. W. (2003). Glucocorticoid exposure
at the dose used clinically alters cytoskeletal proteins and presynaptic terminals in the fetal
baboon brain. J. Physiol., 547(1), 117“23.
Ballard, P. L., Gluckman, P. D., Liggens, G. C., Kaplan, S. K. and Grumbach, M. M. (1980).
Steroid and growth hormone levels in premature infants after prenatal betamethasone therapy
to prevent respiratory distress syndrome. Pediatr. Res., 14, 122“7.
Banks, B. A., Cnaan, A., Morgan, M. A. et al. (1999). Multiple courses of antenatal corticosteroids
and outcome of premature neonates. Am. J. Obstet. Gynecol., 181(3), 709“17.
Barker, D. J. (2002). Fetal programming of coronary heart disease. Trend Endocrinol. Metabolis.,
13(9), 364“8.
Challis, J. R., Sloboda, D., Matthews, S. G. et al. (2001). The fetal placental hypothalamic“
pituitary“adrenal (HPA) axis, parturition and postnatal health. Mol. Cell. Endocrinol.,
185(1“2), 135“44.
Chapillon, P., Patin, V., Roy, V., Vincent, A. and Caston, J. (2002). Effects of pre- and postnatal
stimulation on developmental, emotional, and cognitive aspects in rodents: a review. Develop.
Psychobiol., 41(4), 373“87.
Chrousos, G. P. and Gold, P. W. (1992). The concept of stress and stress system disorders. J. Am.
Med. Assoc., 267(9), 1244“52.
Clarke, A. S., Wittwer, D. J., Abbott, D. H. and Schneider, M. L. (1994). Long-term effects of
prenatal stress on HPA activity in juvenile rhesus monkeys. Develop. Psychobiol., 27(5),
257“69.
Cohen, S., Doyle, W. J. and Skoner, D. P. (1999). Psychological stress, cytokine production, and
severity of upper respiratory illness. Psychosom. Med., 61(2), 175“80.
Copper, R. L., Goldenberg, R. L., Elder, N. et al. (1996). The preterm prediction study: maternal
stress is associated with spontaneous preterm birth at less than thirty-¬ve weeks™ gestation.
Am. J. Obstet. Gynecol., 175, 1286“92.
Cratty, M. S., Ward, H. E., Johnson, E. A., Azzaro, A. J. and Birkle, D. L. (1995). Prenatal stress
increases corticotropin-releasing factor (CRF) content and release in rat amygdala minces. Brain
Res., 675(1“2), 297“302.
Davis, E. P., Snidman, N., Wadhwa, P. D. et al. (2003). The impact of maternal psychological state
during pregnancy on infant temperament. Develop. Psychobiol., 43(3), 252.
Davis, E. P., Snidman, N., Wadhwa, P. D. et al. (2004a). Prenatal maternal anxiety and depression
predict behavioral reactivity in infancy. Infancy, 6(3), 319“31.
Davis, E. P., Townsend, E. L., Gunnar, M. R. et al. (2004b). Effects of prenatal corticosteroid
exposure on regulation of stress physiology in healthy premature infants. Psychoneuro-
endocrinology, 29, 1028“36.
de Kloet, R., Vreugdenhil, E., Oitzl, M. S. and Joels, A. (1998). Brain corticosteroid receptor
balance in health and disease. Endocr. Rev., 19(3), 269“301.
Dent, G. W., Smith, M. A. and Levine, S. (2000). Rapid induction of corticotropin-releasing hor-
mone gene transcription in the paraventricular nucleus of the developing rat. Endocrinology,
141(5), 1593“8.
DiPietro, J. A., Hodgson, D. M., Costigan, K. A. and Johnson, T. R. (1996). Fetal antecedents of
infant temperament. Child Develop., 67(5), 2568“83.
197 In¬‚uence of stress in human fetal and infant development


DiPietro, J. A., Costigan, K. A., Pressman, E. K. and Doussard-Roosevel, J. A. (2000). Antenatal
origins of individual differences in heart rate. Develop. Psychobiol., 37(4), 221“8.
DiPietro, J. A., Hilton, S. C., Hawkins, M., Costigan, K. A. and Pressman, E. K. (2002). Maternal
stress and affect in¬‚uence fetal neurobehavioral development. Develop. Psychol., 38(5), 659“68.
Dobbing, J. and Sands, J. (1979). Comparative aspects of the brain growth spurt. Early Hum.
Develop., 3(1), 79“83.
Dorr, H. G., Heller, A., Versmold, H. T. et al. (1989). Longitudinal study of progestins, mineralo-
corticoids, and glucocorticoids throughout human pregnancy. J. Clin. Endocrinol. Metabolis.,
68(5), 863“868.
Elenkov, I. J. and Chrousos, G. P. (2002). Stress hormones, proin¬‚ammatory and antiin¬‚amma-
tory cytokines, and autoimmunity. Ann. New York Acad. Sci., 966, 290“303.
Erickson, K., Thorsen, P., Chrousos, G. et al. (2001). Preterm birth: associated neuroendocrine,
medical and behavioral risk factors. J. Clin. Endocrinol. Metabolis., 86(6), 2544“52.
Feldman, P. J., Dunkel Schetter, C., Sandman, C. A. and Wadhwa, P. D. (2000). Maternal social sup-
port predicts birth weight and fetal growth in human pregnancy. Psychosom. Med., 62, 715“25.
Florio, P. and Petraglia, F. (2001). Human placental corticotropin releasing factor (CRF) in the
adaptive response to pregnancy. Stress, 4, 247“61.
Francis, D., Diorio, J., Liu, D. and Meaney, M. J. (1999). Nongenomic transmission across gener-
ations of maternal behavior and stress responses in the rat. Science, 286(5442), 1155“8.
French, N., Hagan, R., Evans, S. F., Godfrey, M. and Newnham, J. (1999). Repeated antenatal cor-
ticosteroids: size at birth and subsequent development. Am. J. Obstet. Gynecol., 180, 114“21.
Glynn, L., Wadhwa, P. D., Dunkel Schetter, C. and Sandman, C. A. (2001). When stress happens
matters: the effects of earthquake timing on stress responsivity in pregnancy. Am. J. Obstet.
Gynecol., 184, 637“42.
Gunnar, M. R. (1992). Reactivity of the hypothalamic“pituitary“adrenocortical system to
stressors in normal infants and children. Pediatrics, 90(3), 491“7.
Hedegaard, M., Henriksen, T. B., Sabroe, S. and Secher, N. J. (1993). Psychological distress in
pregnancy and preterm delivery. Brit. Med. J., 307, 234“9.
Hedegaard, M., Henriksen, T. B., Secher, N. J., Hatch, M. C. and Sabroe, S. (1996). Do stressful life
events affect duration of gestation and risk of preterm delivery? Epidemiology, 7(4), 339“45.
Henry, C., Kabbaj, M., Simon, H., LeMoal, M. and Maccari, S. (1994). Prenatal stress increases
the hypothalamio“pituitary“adrenal axis response in young and adult rats. J. Neuroendocrinol.,
6(3), 341“5.
Herman, J. P. and Cullinan, W. E. (1997). Neurocircuitry of stress: central control of the hypo-
thalamio“pituitary“adrenocortical axis. Trend. Neurosci., 20(2), 78“84.
Hillhouse, E. W. and Grammatopoulos, D. K. (2002). Role of stress peptides during human
pregnancy and labor. Reproduction, 124(3), 323“9.
Hobel, C. J., Dunkel-Schetter, C., Roesch, S. C., Castro, L. C. and Arora, C. P. (1999). Maternal
plasma corticotropin-releasing hormone associated with stress at 20 weeks gestation in preg-
nancies ending in preterm delivery. Am. J. Obstet. Gynecol., 180(1 Pt 3), 257“63.
Holzman, C., Jetton, J., Siler-Khodr, T., Fisher, R. and Rip, T. (2001). Second trimester corticotropin-
releasing hormone levels in relation to preterm delivery and ethnicity. Obstet. Gynecol., 97,
657“63.
198 E. P. Davis et al.


Huizink, A. C., De Medina, P. G., Mulder, E. J., Visser, G. H. and Buitelaar, J. K. (2002). Psychological
measures of prenatal stress as predictors of infant temperament. J. Am. Acad. Child and
Adolescent Psychiat., 41(9), 1078“85.
Inder, W. J., Prickett, T. C., Ellis, M. J. et al. (2001). The utility of plasma CRH as a predictor of
preterm delivery. J. Clin. Endocrinol. Metabolis., 86(12), 5706“10.
Jacobson, L. and Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the
hypothalamic pituitary adrenocortical axis. Endocr. Rev., 12(2), 118“34.
Jones, N. A., Field, T., Fox, N. A. et al. (1998). Newborns of mothers with depressive symptoms
are physiologically less developed. Infant Behav. Develop., 21(3), 537“41.
Kagan, J. and Snidman, N. (1991). Temperamental factors in human development. Am. Psychol.,
46, 856“62.
Kauppila, A., Koivisto, M., Pukka, M. and Tuimala, R. (1978). Umbilical cord and neonatal
cortisol levels. Effect of gestational and neonatal factors. Obstet. Gynecol., 52(6), 666“72.
King, B. R., Smith, R. and Nicholson, R. C. (2001). The regulation of human corticotrophin-
releasing hormone gene expression in the placenta. Peptides, 22(11), 1941“7.
Korebrits, C., Yu, D. H., Ramirez, M. M. et al. (1998). Antenatal glucocorticoid administration
increases corticotrophin-releasing hormone in maternal plasma. Brit. J. Obstet. Gynecol.,
105(5), 556“61.
Levine, S. (1957). Infantile experience and resistance to physiological stress. Science, 126, 405“6.
Liu, D., Diorio, J., Tannenbaum, B. et al. (1997). Maternal care, hippocampal glucocorticoid
receptors, and hypothalamic“pituitary“adrenal responses to stress. Science, 277, 1659“62.
Lundy, B. L., Jones, N. A., Field, T. et al. (1999). Prenatal depression effects on neonates. Infant
Behav. Develop., 22(1), 119“29.
Makino, S., Gold, P. W. and Scchulkin, J. (1994). Effects of corticosterone on CRH mRNA and
content in the central nucleus and the parvocellular region of the paraventricular nucleus of
the hypothalamus. Brain Res., 640, 105“12.
Marinoni, E., Korebrits, C., Di Lorio, R., Cosmi, E. V. and Challis, J. R. (1998). Effect of betametha-
sone in vivo on placental corticotropin-releasing hormone in human pregnancy. Am. J. Obstet.
Gynecol., 178(4), 770“8.
Matthews, S. G. (2000). Antenatal glucocorticoids and programming of the developing CNS.
Pediatr. Res., 47(3), 291“300.
Matthews, S. G. (2002). Early programming of the hypothalamo“pituitary“adrenal axis. Trend.
Endocrinol. Metab., 13(9), 373“80.
Matthews, S. G., Owen, D., Benjamin, S. and Andrews, M. H. (2002). Glucocorticoids, hypothal-
amo“pituitary“adrenal (HPA) development, and life after birth. Endocr. Res., 28(4), 709“18.
McEwen, B. S. (1999). Stress and hippocampal plasticity. Annu. Rev. Neurosci., 22, 105“22.
McEwen, B. S., Biron, C. A., Brunson, K. W. et al. (1997). The role of adrenocorticoids as modu-
lators of immune function in health and disease: neural, endocrine, and immune interactions.
Brain Res. Rev., 23(1“2), 79“133.
McLean, M., Bisits, A., Davies, J. et al. (1995). A placental clock controlling the length of human
pregnancy. Nat. Med., 1, 460“3.
Meaney, M. J.,Aitken, D. H.,Van Berkel, C., Bhatnagar, S. and Sapolsky, R. M. (1988). Effect of neona-
tal handling on age-related impairments associated with the hippocampus. Science, 239, 766“8.
199 In¬‚uence of stress in human fetal and infant development


Misra, D. P., O™campo, P. and Strobino, D. (2001). Testing a sociomedical model for preterm
delivery. Pediatr. Perinatol. Epidemiol., 15, 110“22.
Moawad, A. H., Goldenberg, R. L., Mercer, B. et al. (2002). The preterm prediction study: the
value of serum alkaline phosphatase, alpha-fetoprotein, plasma corticotropin-releasing hor-
mone, and other serum markers for the prediction of spontaneous preterm birth. Am. J.
Obstet. Gynecol., 186(5), 990“6.
Monk, C., Fifer, W. P., Myers, M. M. et al. (2000). Maternal stress responses and anxiety during
pregnancy: effects on fetal heart rate. Develop. Psychobiol., 36(1), 67“77.
Monk, C., Myers, M. M., Sloan, R. P., Ellman, L. M. and Fifer, W. P. (2003). Effects of women™s
stress-elicited physiological activity and chronic anxiety on fetal heart rate. J. Develop. Behav.
Pediatr., 24(1), 32“8.
Munck, A., Guyre, P. M. and Holbrook, N. J. (1984). Physiological functions of glucocorticoids
in stress and their relation to pharmacological actions. Endocr. Rev., 5(1), 25“44.
Nathanielsz, P. W. (1999). Life in the Womb: The Origin of Health and Disease. Ithaca, New York:
Promethean Press.
Ng, P. C., Lam, C. W., Lee, C. H. et al. (2002). Reference range and factors affecting the human
corticotropin-releasing hormone test in preterm, very low birth weight infants. J. Clin.
Endocrinol. Metabolis., 87(10), 4621“8.
O™Connor, T. G., Heron, J. and Glover, V. (2002a). Antenatal anxiety predicts child
behavioral/emotional problems independently of postnatal depression. J. Am. Acad. Child
Adolescent Psychiat., 41(12), 1470“7.
O™Connor, T. G., Heron, J., Golding, J., Beveridge, M. and Glover, V. (2002b). Maternal antenatal
anxiety and children™s behavioural/emotional problems at 4 years: report from the Avon
longitudinal study of parents and children. Brit. J. Psychiat., 180, 502“8.
Parker, C. R. J., Atkinson, M. W., Owen, J. and Andrews, W. W. (1996). Dynamics of the fetal
adrenal, cholesterol, and apolipoprotein B responses to antenatal betamethasone therapy. Am.
J. Obstet. Gynecol., 174(2), 562“5.
Peterson, B. S., Anderson, A. W., Ehrenkranz, R. et al. (2003). Regional brain volumes and their
later neurodevelopmental correlates in term and preterm infants. Pediatrics, 111(5), 939“48.
Petraglia, F., Florio, P., Nappi, C. and Genazzani, A. R. (1996). Peptide signaling in human placenta
and membranes: autocrine, paracrine, and endocrine mechanisms. Endocr. Rev., 17, 156“86.
Pritchard, C. W. and Teo, P. Y. (1994). Preterm birth, low birthweight and the stressfulness of the
household role for pregnant women. Soc. Sci. Med., 38, 89“96.
Rini, C. K., Dunkel Schetter, C., Wadhwa, P. D. and Sandman, C. A. (1999). Psychological adap-
tation and birth outcomes: the role of personal resources, stress and sociocultural context dur-
ing pregnancy. Health Psychol., 18, 333“45.
Romero, R., Gomez, R., Chaiworapongsa, T. et al. (2001). The role of infection in preterm labour
and delivery. Pediatr. Perinatal Epidemiol., 15(S2), 41“56.
Sanchez, M. M., Young, L. J., Plotsky, P. M. and Insel, T. R. (2000). Distribution of corticosteroid
receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal
formation. J. Neurosci., 20(12), 4657“68.
Sandman, C. A., Wadhwa, P. D., Chicz-DeMet, A., Dunkel-Schetter, C. and Porto, M. (1997a).
Maternal stress, HPA activity, and fetal/infant outcome. Ann. New York Acad. Sci., 814, 266“75.
200 E. P. Davis et al.


Sandman, C. A., Wadhwa, P. D., Hetrick, W., Porto, M. and Peeke, H. V. S. (1997b). Human fetal
heart rate dishabituation at thirty-two weeks gestation. Child Develop., 68, 1031“40.
Sandman, C. A., Wadhwa, P. D., Chicz-DeMet, A., Garite, T. J. and Porto, M. (1999). Maternal
corticotropin-releasing hormone (CRH) in¬‚uences heart rate reactivity to challenge in
human pregnancy. Develop. Psychobiol., 34(3), 163“73.
Sandman, C., A., Glynn, L., Wadhwa, P. D. et al. (2003). Maternal hypothalamic“pituitary“
adrenal disregulation during the third trimester in¬‚uences human fetal responses. Develop.
Neurosci., 25, 41“9.
Schneider, M. L. (1992). Prenatal stress exposure alters postnatal behavioral expression under
conditions of novelty challenge in rhesus monkey infants. Develop. Psychobiol., 25(7), 529“40.
Schneider, M. L. and Coe, C. L. (1993). Repeated social stress during pregnancy impairs neuro-
motor development of the primate infant. J. Develop. Behav. Pediatr., 14, 81“7.
Schneider, M. L., Coe, C. L. and Lubach, G. R. (1992). Endocrine activation mimics the adverse
effects of prenatal stress on the neuromotor development of the infant primate. Develop.
Psychobiol., 25(6), 427“39.
Schneider, M. L., Roughton, E. C., Koehler, A. J. and Lubach, G. R. (1999). Growth and develop-
ment following prenatal stress exposure in primates: an examination of ontogenetic vulnera-

<<

. 35
( 51 .)



>>