<<

. 47
( 51 .)



>>

releasing hormone mRNA content in the amygdala and the paraventricular nucleus. Brain
Res., 656, 182“6.
Kalin, N. H., Larson, C., Shelton, S. E. and Davidson, R. J. (1998a). Asymmetric frontal brain
activity, cortisol, and behavior associated with fearful temperament in rhesus monkeys. Behav.
Neurosci., 112, 286“92.
263 Glucocorticoid facilitation of CRH in the placenta and the brain


Kalin, N. H., Shelton, S. E., Rickman, M. and Davidson, R. J. (1998b). Individual differences in
freezing and cortisol in infant and mother rhesus monkeys. Behav. Neurosci., 112, 251“4.
Kalin, N. H., Shelton, S. E. and Davidson, R. J. (2000). Cerebrospinal ¬‚uid corticotropin-releasing
hormone levels are elevated in monkeys with patterns of brain activity associated with fearful
temperament. Biol. Psychiatr., 47, 579“85.
Kalin, N. H., Shelton, S. E., Davidson, R. J. and Kelley, A. E. (2001). The primate amygdala medi-
ates acute fear but not the behavioral and physiological components of anxious temperament.
J. Neurosci., 21, 2067“74.
Koob, G. F. et al. (1993). The role of corticotropin releasing hormone in behavioral responses to
stress. In K. Chadwick, J. Marshj and K. Ackrill, eds., Corticotropin Releasing Factor, New York:
Wiley.
Korebrits, C., Ramirez, M. M. et al. (1998). Maternal corticotropin-releasing hormone is
increased with impending preterm birth. J. Clin. Endocrinol. Metab., 83(5), 1585“91.
Korte, S. M. (2001). Corticosteroids in relation to fear, anxiety and psychopathology. Neurosci.
Biobehav. Rev., 25, 117“42.
Le Doux, J. E. (2000). Emotion circuits in the brain. Annu. Rev. Neurosci., 23, 155“84.
Lee, Y., Schulkin, J. and Davis, M. (1994). Effect of corticosterone on the enhancement of the
acoustic startle re¬‚ex by corticotropin releasing hormone. Brain Res., 666, 93“8.
Levine, S. (1975). Psychosocial factors in growth and development. In L. Levi, ed., Society, Stress,
and Disease, London: Oxford University Press.
Levine, S. (2000). Modulation of CRF gene expression by early experience. Neuro-
psychopharmacology, 23, S77.
Levine, S., Dent, G. and De Kloet, E. R. (2000). Stress-hyporesponsive period. Encylop. Stress, 3,
518“26.
Liang, K. C., Melia, K. R., Campeau, S. et al. (1992). Lesions of the central nucleus of the
amygdala but not the paraventricular nucleus of the hypothalamus block the excitatory
effects of corticotropin-releasing factor on the acoustic startle response. J. Neurosci., 19,
2313“20.
Majzoub, J. A., McGregor J. A. et al. (1999). A central theory of preterm and term labor: putative
role for corticotropin-releasing hormone. Am. J. Obstet. Gynecol., 180(1 Pt 3), S232“41.
Makino, S., Gold, P. W. and Schulkin, J. (1994a). Corticosterone effects on corticotropin-releasing
hormone mRNA in the central nucleus of the amygdala and the parvocellular region of the
paraventricular nucleus of the hypothalamus. Brain Res., 640(1“2), 105“12.
Makino, S., Gold, P. W. and Schulkin, J. (1994b). Effects of corticosterone on CRH mRNA and
content in the bed nucleus of the stria terminalis; comparison with the effects in the central
nucleus of the amygdala and the paraventricular nucleus of the hypothalamus. Brain Res.,
657(1“2), 141“9.
Makino, S., Schulkin, J., Smith, M. A. et al. (1995). Regulation of corticotropin-releasing hor-
mone receptor messenger ribonucleic acid in the rat brain and pituitary by glucocorticoids
and stress. Endocrinology, 136, 4517“25.
Marinoni, E., Korebrits, C., Di Iorio, R., Cosmi, E. V. and Challis, J. R. (1998). Effect of betametha-
sone in vivo on placental corticotropin-releasing hormone in human pregnancy. Am. J. Obstet.
Gynecol., 178, 770“8.
264 J. Schulkin et al.


Mason, J. W. (1975). Emotions as re¬‚ected as patterns of endocrine integration. In L. Levi, ed.,
Emotions: Their Parameters and Measurements, New York: Raven Press.
Mason, J. W., Giller, E. L. et al. (1988). Elevation of urinary norepinephrine/cortisol ratio in
posttraumatic stress disorder. J. Nerv. Ment. Dis., 176(8), 498“502.
McEwen, B. S. (2004). Protection and damaging effects on the mediators of stress adaptation:
allostasis and allostatic load. In J. Schulkin, ed., Allostasis, Homeostasis and the Costs of
Physiological Adaptation, Cambridge: Cambridge University Press.
Meaney, M. J., Bhatucgar, S., Larocque, S. et al. (1993). Individual differences in the hypothala-
mic pituitary adrenal stress response and the hypothalamic CRF system. Ann. NY Acad. Sci.,
697, 70“85.
Meis, P. J., Kiebanoff, M., Thom, E. et al. (2003). Prevention of recurrent preterm delivery by 17
alpha-hydroxyprogesterone caproate. New Engl. J. Med., 348, 2379“455.
Merali, Z., Michaud, D., McIntosh, J., Kent, P. and Anisman, H. (2003). Differential involve-
ment of amygdaloid CRH systems in the salence and valence of the stimuli. Progr.
Neuropsychopharmacol. Biol. Psychiatr., 27, 1201“12.
Nemeroff, C. B., Widerlov, E., Bissette, G. et al. (1984). Elevated concentrations of CSF corticotropin
releasing factor-like immunoreactivity in depressed outpatients. Science, 26, 1342“4.
Nemeroff, C. B., Owens, M. J., Bissette, G., Andorn, A. C. and Stanley, M. (1988). Reduced
corticotropin-releasing factor binding sites in the frontal cortex of suicide victims. Arch. Gen.
Psychiatr., 45, 577“9.
Nemeroff, C. B., Krishnan, K. R., Reed, D. et al. (1992). Adrenal gland enlargement in major
depression: a computed tomographic study. Arch. Gen. Psychiatr., 49, 384“7.
Palkovits, M., Brownstein, M. J. and Vale, W. (1983). Corticotropin releasing hormone immunore-
activity in hypothalamus and extrahypothalamic nuclei of sheep brain. Neuroendocrinology,
37, 302“5.
Petraglia, F., Volpe, A., Genazzani, A. R. et al. (1990). Neuroendocrinology of the human pla-
centa. Front. Neuroendocrinol., 11, 6“37.
Petraglia, F., Aguzzoli, L., Florio, P. et al. (1995). Maternal plasma and placental immunoreactive
corticotropin-releasing factor concentrations in infection-associated term and pre-term
delivery. Placenta, 16l, 157“64.
Plotsky, P. M. (1996). Early environmental regulation of forebrain glucocorticoid receptor
gene expression: implications for adrenocortical responses to stress. Develop. Neurosci., 18,
49“72.
Pugh, C. R., Tremblay, D., Fleshner, M. and Rudy, J. W. (1997). A selective role for corticosterone
in fear conditioning. Behav. Neurosci., 111, S303“11.
Rauch, S. L., van der Kolk, B. A. et al. (1996). A symptom provocation study of posttraumatic
stress disorder using positron emission tomography and script-driven imagery. Arch. Gen.
Psychiatr., 53(5), 380“7.
Rauch, S. L., Whalen, P. J. et al. (2000). Exaggerated amygdala response to masked facial
stimuli in posttraumatic stress disorder: a functional MRI study. Biol. Psychiatr., 47(9),
769“76.
Richter, C. P. (1949). Domestication of the norway rat and its implications for the problem of
stress. Proc. Assoc. Res. Nerv. Ment. Dis., 29, 19“30.
265 Glucocorticoid facilitation of CRH in the placenta and the brain


Robinson, B. G., Emanuel, R. L. et al. (1988). Glucocorticoid stimulates expression of corti-
cotropin-releasing hormone gene in human placenta. Proc. Natl. Acad. Sci. USA, 85(14), 5244“8.
Roozendaal, B., Brunson, K. L., Holloway, B. L., McGaugh, J. L. and Baram, T. Z. (2002). Involvement
of stress-released corticotropin-releasing hormone in the basolateral amygdala in regulating
memory consolidation. Proc. Natl. Acad. Sci., 99, 13908“13.
Rosen, J. B. and Schulkin, J. (1998). From normal fear to pathological anxiety. Psychol. Rev., 105,
325“50.
Rosenbaum, J. F., Biederman, J. et al. (2000). A controlled study of behavioral inhibition in chil-
dren of parents with panic disorder and depression. Am. J. Psychiatr., 157(12), 2002“10.
Sachar, E. J., Hellman, L., Fukushima, d. K. and Gallagher, T. F. (1970). Cortisol production in
depressive illness: a clinical and biochemical clari¬cation. Arch. Gen. Psychiatr., 23, 289“98.
Sanchez, M. M., Young, L. J., Plotsky, P. M. and Insel, T. R. (2000). Distribution of corticosteroid
receptors in the rhesus brain: relative absence of glucocorticoid receptors in the hippocampal
formation. J. Neurosci., 20, 4657“68.
Sandman, C. A., Wadhwa, P. D., Chicz-DeMet, A., Porto, M. and Garite, T. J. (1999). Maternal
corticotropin-releasing hormone and habituation in the human fetus. Develop. Psychobiol.,
34, 163“73.
Sapolsky, R. M. (2000). Glucocorticoids and hippocampal atrophy in neuropsychiatric disor-
ders. Archiv. of Gen. Psychiatr., 57, 925“35.
Schmidt, L. A. and Schulkin, J. (1999). Extreme Fear, Shyness and Social Phobia, Oxford: Oxford
University Press.
Schmidt, L. A., Fox, N. A., Rubin, K. J. et al. (1997). Behavioral and neuroendocrine responses in
shy children. Develop. Psychobiol., 30, 127“40.
Schmidt, L. A., Fox, N. A., Schulkin, J. and Gold, P. W. (1999a). Behavioral and psychophysio-
logical correlates of self-presentation in temperamentally shy children. Develop. Psychobiol.,
35, 119“35.
Schmidt, L. A., Fox, N. A., Sternberg, E. M. et al. (1999b). Adrenocortical reactivity and social
competence in seven year-olds. Pers. Indiv. Differ., 26, 977“85.
Schneider, F., Weiss, U. et al. (1999). Subcortical correlates of differential classical conditioning of
aversive emotional reactions in social phobia. Biol. Psychiatr., 45(7), 863“71.
Schulkin, J. (1999). CRH signals adversity in both the placenta and the brain: regulation by glu-
cocorticoids and allostatic overload. J. Endocrinol., 161, 340“56.
Schulkin, J. (2003). Rethinking Homeostasis, Cambridge: MIT Press.
Schulkin, J., Gold, P. W. and McEwen, B. S. (1998). Induction of corticotropin-releasing hor-
mone gene expression by glucocorticoids: implication for understanding the states of fear and
anxiety and allostatic load. Psychoneuroendocrinology, 23(3), 219“43.
Schwartz, C. E., Snidman, N. et al. (1999). Adolescent social anxiety as an outcome of inhibited
temperament in childhood. J. Am. Acad. Child Adolesc. Psychiatr., 38(8), 1008“15.
Schwartz, C. E., Wright, C. I. et al. (2003a). Inhibited and uninhibited infants ˜grown up™: adult
amygdala response to novelty. Science, 300, 1952“3.
Schwartz, C. E., Wright, C. I. et al. (2003b). Differential amygdalar response to novel versus
newly familiar neutral faces: a functional MRI probe developed for studying inhibited tem-
perament. Biol. Psychiatr., 53(10), 854“62.
266 J. Schulkin et al.


Seckl, J. R. (1997). Glucocorticoids, feto-placental 11 beta-hydroxysteroid dehydrogenase type 2,
and the early life origins of adult disease. Steroids, 62, 89“94.
Shepard, J. D., Barron, K. W. and Myers, D. A. (2000). Corticosterone delivery to the amygdala
increases corticotropin-releasing hormone mRNA in the central nucleus of the amygdala and
anxiety-like behavior. Brain Res., 851, 288“95.
Shepard, J. D., Barron, K. W. and Myers, D. A. (2003). Sterotaxic localization of corticosterone to
the amygdala enhances hypothalamic“pituitary adrenal responses to behavioral stress. Brain
Res., 963, 203“13.
Shin, L. M., Kosslyn, S. M. et al. (1997). Visual imagery and perception in posttraumatic stress
disorder. A positron emission tomographic investigation. Arch. Gen. Psychiatr., 54(3), 233“41.
Strome, E. M., Trevor-Wheler, G. H., Higley, J. D. et al. (2002). Intracerebroventricular CRH
increases limbic glucose metabolism and has social context dependent behavioral effects in
nonhuman primates. Proc. Natl. Acad. Sci., 99, 15749“54.
Sullivan, R. M. and Gratton, A. (2002). Prefrontal cortical regulation of HPA function in the rat
and implications for psychopathology. Psychoneuroendocrinology, 27, 99“114.
Swanson, L. W. and Simmons, D. M. (1989). Differential steroid hormone and neural in¬‚uences
on peptide mRNA levels in CRH cells of the paraventricular nucleus: a hybridization histo-
chemical study in the rat. J. Comp. Neurol., 285, 413“35.
Swanson, L. W., Sawchenko, P. E., Rivier, J. and Vale, W. W. (1983). Organization of ovine corti-
cotropin releasing hormone immunoreactive cells and ¬bers in the rat brain: an immunohis-
tochemical study. Neuroendocrinology, 36, 165“86.
Swerdlow, N. R., Briton, K. T. and Koob, G. F. (1989). Potentiation of acoustic startle by corti-
cotropin-releasing factor (CRF) and by fear are both reversed by alpha-helical CRF (9“41).
Neuropsychopharmacology, 2, 285“92.
Takahashi, L. K., Kalin, N. H., Vanden-Burgt, J. A. and Sherman, J. E. (1989). Corticotropin-
releasing hormone modulates defensive-withdrawal and exploratory behavior in rats. Behav.
Neurosci., 3, 648“54.
Takahashi, L. K. and Kim, H. (1994). Intracranial action of corticosterone facilitates the development
of behavioral inhibition in the adrenalectomized preweanling rat. Neurosci. Lett., 176, 272“6.
Tanimura, S. M. and Watts, A. G. (1998). Corticosterone can facilitate as well as inhibit corti-
cotropin-releasing hormone gene expression in the rat hypothalamic paraventricular nucleus.
Endocrinology, 139, 3830“6.
Thompson, B. L., Erickson, K., Schulkin, J. and Rosen, J. B. (2004). Repeated corticosterone admin-
istration facilitates retention of contextual fear conditioning and increases CRH mRNA expres-
sion in the amygdala. Behav. Brain Res., 149, 209“15.
Trautman, P. D., Meyer-Bahlburg, H. F., Postelnek, J. and New, M. I. (1995). Effects of early pre-
natal dexamethasone on the cognitive and behavioral development of young children: results
of a pilot study. Psychoneuroendocrinology, 20, 439“49.
Valentino, R. J. et al. (1994). Evidence for widespread afferents to Barrington™s nucleus, a brain-
stem region rich in CRF neurons. Neuroscience, 62, 123“45.
Valentino, R. J., Pavcovich, L. A. and Hirata, H. (1995). Evidence for corticotropin-releasing hor-
mone projections from Barrington™s nucleus to the periaqueductal gray and dorsal motor
nucleus of the vagus in the rat. J. Comp. Neurol., 363, 402“22.
267 Glucocorticoid facilitation of CRH in the placenta and the brain


Van Ameringen, M., Mancini, C. et al. (1998). The relationship of behavioral inhibition and shy-
ness to anxiety disorder. J. Nerv. Ment. Dis., 186(7), 425“31.
Wadhwa, P. D., Sandman, C. A., Porto, M., Dunkel-Schetter, C. and Garite, T. J. (1993). The asso-
ciation between prenatal stress and infant birth weight and gestational age at birth: a prospec-
tive investigation. Am. J. Obstet. Gynecol., 169, 858“65.
Wadhwa, P. D., Sandman, C. A. et al. (2001). The neurobiology of stress in human pregnancy:
implications for prematurity and development of the fetal central nervous system. Progr.
Brain Res., 133, 131“42.
Warren, S. L., Gunnar, M. R. et al. (2003). Maternal panic disorder: infant temperament, neuro-
physiology, and parenting behaviors. J. Am. Acad. Child Adolesc. Psychiatr., 42(7), 814“25.
Watts, A. G. and Sanchez-Watts, G. (1995). Region-speci¬c regulation of neuropeptide mRNAs
in rat limbic forebrain neurones by aldosterone and corticosterone. J. Physiol., 484(Pt 3), 721“36.
Welberg, L. A., Seckl, J. R. and Holmes, M. C. (2000). Inhibition of 11 beta-hydroxysteroid dehydro-
genase, the foeto-placental barrier to maternal glucocorticoids, permanently programs amygdala
GR mRNA expression and anxiety-like behavior in the offspring. Eur. J. Neurosci., 12, 1047“54.
Welberg, L. A. and Seckl, J. R. (2001). Prenatal stress, glucocorticoids and the programming of
the brain. J. Neuroendocrinol., 13, 113“28.
Wolfe, C. D., Patel, S. P. et al. (1988). Plasma corticotrophin-releasing factor (CRF) in normal
pregnancy. Br. J. Obstet. Gynaecol., 95, 997“1002.
Wong, M. L., Kling, M. A. et al. (2000). Pronounced and sustained central hypernoradrenergic
function in major depression with melancholic features: relation to hypercortisolism and
corticotropin-releasing hormone. Proc. Natl. Acad. Sci. USA, 97(1), 325“30.
Yehuda, R. (2002). Current status of cortisol ¬ndings in post-traumatic stress disorder. Psychiatr.
Clin. North Am., 25(2), 341“68, vii.
Yehuda, R., Giller, E. L. et al. (1991). Hypothalamic“pituitary“adrenal dysfunction in posttrau-
matic stress disorder. Biol. Psychiatr., 30(10), 1031“48.
Index




animal models
actions of mechanisms
diversity 103
receptor mechanisms 151, 213
steroidogenesis 104
signal transduction mechanisms 210,
antenatal glucocorticoid exposure see prenatal
213
glucocorticoid exposure
actions on the gene 212, 220
antenatal glucocorticoids on CNS
activator protein 2 (AP-2) 164
antioxidants 161
adenylate cyclase activity 24, 41
dexamethasone 162, 163
adipoinsular axis 130, 131
structural effects 160
adipose tissue
anterior pituitary cells 21, 24
adiponectin 156
anthropoid primates 6, 90, 94, 104, 185
muscle and fat 154
anxiety-related behaviors 151, 162, 259
leptin 155
arginine vasopressin (AVP) 23, 115, 159, 202,
adrenal glands 92, 96, 247
231
adrenal hormones 30, 185, 191
AVP gene expression 208, 217, 218
adrenal steroids
AVP gene 220“223, 227
glucocorticoids 242
CRH neuroendocrine neurons 209, 214,
mineralocorticoids 243
227
adrenalectomized (ADX) 10, 93, 151, 205,
rapid negative-feedback signal 227
206, 207, 228, 231
adrenocorticotrophic hormone (ACTH)
basal conditions
AVP 115, 159, 202“206, 208“209, 216“223,
ACTH secretion 217, 218, 221, 226, 227
226“227
corticosterone™s long-term actions 219
CRH 8, 21, 79, 95, 116, 162, 185, 205,
CRH gene expression 218, 225“228
206

<<

. 47
( 51 .)



>>