<< Предыдущая

стр. 2
(из 3 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

Snapshot – информация о текущем состоянии бумаги по результатам торгов, представляющая собой как бы моментальную съемку процесса торгов (откуда и английское название раздела). Сюда, к примеру, относятся:
Previous Close – цена последних торгов по состоянию на конец вчерашней торговой сессии;
Day's High, Day's Low – максимум и минимум котировок соответственно;
Volume – полное число акций, торгуемых за опрелделенный период времени. Ненормально высокий объем торгов обычно связан с появлением новостей о компании, хороших или плохих. В отсутствие новостей, такой высокий объем может быть сопряжен с операциями, осуществляемыми институциональным крупным инвестором;
Trailing P/E Ratio – отношение последней котировки к доходам компании за последний год в расчете на одну акцию;
52-Week High (Low) – наименьшая (наибольшая) цена акции за прошедшие 52 недели;
Market Value – рыночная капитализация компании, которая определяется как произведение числа акций в обращении (number of shares outstanding) на последнюю котировку акции.

Earnings – информация о текущих доходах по бумаге, в сопоставлении с теми же данными по сектору экономики, к которому принадлежит компания, и по одному из базовых индексов.

Ratings – брокерские рекомендации покупать (удерживать, продавать) акции данного эмитента. Они определяются как среднее по всем мнениям фондовых аналитиков (экспертов).

Financials – данные о текущем финансовом состоянии компании-эмитента. Сюда, в частности, следует отнести:
Revenues - включает в себя все чистые продажи компании (net sales) плюс вся дополнительная выручка, связанная с основной деятельностью компании. Не включает в себя дивиденды, процентный и любой иной доход, не связанный с основной деятельностью;
Net Earnings-Per-Share (EPS) - доход компании за вычетом всех затрат и налоговых выплат в расчете на одну акцию;
Long-Term Debt – кредиторская задолженность, которая должна быть погашена в срок более года. Эта задолженность может быть образована банковским кредитом, облигационным займом и другими способами;
Net Margin – доходность компании, определяемая как отношение чистого дохода компании к ее выручке.

Key Ratios, куда, в частности, относятся:
Trailing P/E;
Price/Book – отношение последние цены акции к собственному капиталу компании в расчете на одну акцию;
Price/Cash Flow – отношение цены акции к чистому денежному потоку компании в расчете на одну акцию;
Price/Sales – отношение цены акции к продажам в расчете на одну акцию.

News – новости, касающиеся компании и могущие повлиять на курс ее акций.

Alerts – предупреждения о наступивших событиях, которые могут повлиять на перспективный курс акций компании. Эти предупреждения можно классифицировать следующим образом:
Top alerts – предупреждения, которые имеют наибольшее значение для оценки перспективного курса акций;
Prise/Volume alerts – сообщение о резком изменении курса акций или объема продаж;
Analists alerts – сообщения о переоценке акций ведущими консалтинговыми компаниями, а также сообщения о неожиданном росте (снижении) дивидендных выплат против ожидаемых значений;
Finance alerts – сообщения о резких изменениях значений ключевых индикаторов и финансовых показателей деятельности компании
Calendar events alerts – сообщения об отчетах, направляемых компанией в Securities & Exchange Commission (SEC). Сюда же относятся и предупреждения, которые комиссия направляет компании-эмитенту в случае нарушения каких-либо ее требований;
News alerts – сообщения о ключевых новостях по компании.

Принимая решение о приобретении или продаже акции, инвестор должен обращать внимание не только на рынок акций интересующей его компании, но и на рынки соответствующих отраслей. Очень важную для инвестиций информацию дает сопоставление показателей компании и отрасли, к которой она относится, потому что отраслевые значения показателей являются осредненными и свидетельствуют о потенциальных возможностях компании, средней по всем своим финансовым показателям. Это дает информативный ориентир для принятия инвестиционных решений.

Главным видом риска для акции является колеблемость (волатильность) ее курсовой цены. Для компаний с низкой капитализацией характерен также и дефолтный риск, который пренебрежимо мал для так называемых «голубых фишек» акций компаний с капитализацией от 50 млрд. долларов и выше.


Бумаги с фиксированным доходом

Долговые обязательства – это бумаги с фиксированным, заведомо известным номинальным доходом и порядком его получения для инвестора. Для краткости все эти бумаги можно называть бондами.

Бонды и их виды варьируются в зависимости от:
эмитента. Бонды могут быть выпущены казначейством США, правительственными агентствами, муниципальными образованиями и корпорациями. Мы не берем в расчет рынок векселей и долговых расписок, эмиттированных частными лицами;
срока погашения. Бонды могут быть ультракраткосрочными (длительностью от 3 месяцев до года), краткосрочными (длительностью от года до 5 лет), среднесрочными (длительностью от 5 лет до 10 лет) и долгосрочными (более 10 лет);
кредитного качества – способности обеспечивать платежи в том порядке, как это записано в проспекте эмиссии. Наименьшим дефолтным риском в этом плане обладают краткосрочные казначейские векселя, наивысшим – так называемые «мусорные» бонды (бонды тех компаний, которые испытывают проблемы с платежами). Кредитное качество находится в прямой связи с дефолтным риском по бонду, и в обратной связи – с доходностью этих бумаг. Поэтому «мусорные» бонды часто называют «высокодоходными», с оттенком подозрения;
структуры. Все бонды подразделяются на купонные (процентные), когда в проспекте эмисии фигурируют проценты, выплачиваемые в обусловленном размере с некоторой периодичностью, дисконтные, когда цена бонда при его первичном размещении ниже номинала на размер собственно дисконта, и комбинированные бонды, когда дисконт в них присутствует наряду с процентными выплатами.

Главными рисками для бондов являются:
для государственных бумаг – процентный риск, когда, с изменением рыночных условий, изменяется ставка безрискового финансирования (уровень процентной ставки федеральной резервной системы), что влияет на доходность уже состоявшихся выпусков бондов;
для корпоративных бумаг, наряду с процентным риском – риск дефолта компании.




Паи взаимных фондов

Взаимный фонд – это инвестиционная компания, которая вкладывает деньги множества своих вкладчиков в фондовые активы определенной направленности. Ценная бумага, которой обладает вкладчик взаимного фонда, называется паем. Принцип работы взаимного фонда в том, что его вкладчики оказываются совладельцами оптимального, по мысли управляющего фондом, фондового портфеля, где достигается максимум доходности при заданном уровне риска инвестиций.

По типу инвестиций, взаимные фонды подразделяются на фонды акций, фонды облигаций, фонды денежного рынка, гибридные фонды и хедж-фонды. Первые осуществляют вложения в акции, вторые – в бонды, третьи - в ультракраткосрочные высоконадежные бумаги с фиксированным доходом. Гибридные фонды содержат в своих портфелях смесь акций и бондов, а хедж-фонды – произвольные активы.

В пределах каждого выделенного класса фондов можно провести классификацию по отраслевому, территориальному и функциональному признаку. Выбирая ту или иную стратегию, фонд позиционирует себя в определенном двумерном пространстве «ожидаемый риск – ожидаемая доходность». Это позволяет профессиональному управляющему фондом выбрать надлежащие стратегии портфельного менеджмента, которые позволят добиться успеха.

Все риски, присущие тем или иным инструментам, в случае фонда не элиминируются, но диверсифицируются. При этом возрастает значение тех рисков, рынок которых представлен фондом. Так, отраслевые фонды страдают большей частью отраслевыми рисками, региональные – страновыми, фонды определенной функциональной направленности – рисками данной функциональности. Так, фонды, нацеленные на льготное налогообложение, могут совершенно стушеваться, если изменится характер льгот.

По смыслу, волатильность (колеблемость цены активов) фонда должна быть меньше волатильности отдельной акции или бонда, по смыслу диверсификации. Но, если диверсификация проведена неправильно, то эти волатильности разнятся мало. К примеру, отраслевые фонды по определению исключают межотраслевую диверсификацию, зато резко понижается дефолтный риск, рассматриваемый на уровне фонда в целом.

При всем том появляется дополнительный аспект риска – это риск ошибочного менеджмента, когда, формируя портфель, менеджер исходит из заведомо ложных базовых предпосылок. Например, вкладываясь в перегретые акции высокотехнологичных компаний, менеджер расстается со здравым смыслом, ошибочно планируя продолжение роста котировок.

Но, так или иначе, обычный индивидуальный инвестор должен предпочитать фонды отдельным инструментам. Так, по крайней мере, он избавится от рисков, присущих данной отдельной бумаге, участвуя в портфеле из большого числа бумаг. Далее, усиливая эффект диверсификации, инвестор собирает уже свой собственный портфель из ряда фондов различной направленности.


Опционы

Рынок производных ценных бумаг обязан своим возникновением и развитием появлению интересов, непосредственно сопряженных с обладанием ценными бумагами и иными денежными активами. Агенты рынка стремятся максимизировать свою прибыль или минимизировать риск. В тот момент, когда у двух таких агентов возникают противоположные интересы или обратные рыночные предпочтения, возникает предмет специального соглашения между этими двумя агентами.

Например, инвестор, стремящийся понизить свои курсовые риски, приобретает право продать свои бумаги в будущем по фиксированной цене (put опцион). Подспудно такой инвестор закладывается на возможность падения цен (страхуется, хеджируется). При этом говорится, что инвестор занял длинную позицию. Наоборот, агент, уступающий опцион, рассчитывает на то, что цена не упадет ниже определенного критического уровня. Он полагает, что в процессе исполнения контракта покупатель опциона просто потеряет деньги, а он, наоборот, наживется. Говорят, что, уступая опцион, продавец встает в короткую позицию по этой бумаге.

Есть и еще вариант: этот агент дополнительно приобретает put опцион («покрывается») с большей ценой исполнения (страйком). Тогда, при значительном падении курсовой цены, агент-продавец извлечет доход в виде «спрэда медведя» (курсовой разницы между страйками двух опционов). Но, разумеется, если падения курсов не происходит, в этом случае оба агента проигрываают.

Или еще пример. Некий агент приобретает право приобрести бумаги по фиксированной цене в будущем (call опцион). Такой агент рассчитывает на то, что бумага вырастет значительно выше страйка call опциона, и в доход ему попадет вся разница между курсовой ценой и страйком (за вычетом, разумеется, цены самого опциона). Другой агент, уступающий call опцион, разумеется, рассчитывает на то, что подобного курсового роста не произойдет. Если же он не вполне уверен в своем суждении, он может покрыться call опционом с меньшим страйком. Тогда, в случае существенного курсового роста агент-продавец поймает «спрэд быка» - разницу между двумя страйками. В случае падения цен оба агента потеряют деньги.

Итак, возникает множество противоположных интересов, связанных с обладанием фондовыми активами (производных интересов). Столкновение этих интересов осуществляется на рынке. Организованным местом такого рода торговли является опционная биржа. Классическим примером биржи такого рода является CBOE – Chicago Board Options Exchange.

Опционы – это самые высокорискованные инвестиции из всех вышеперечисленных. Этот риск сопряжен с риском подлежащего актива, но он многократно усилен за счет эффекта финансового рычага (подробно этот феномен рассмотрен в главе 7). Зато многократно возрастают и ожидаемые доходы от правильных инвестиций, потому что инвестор в опцион, не владея самим подлежащим активом, имеет право на использование выгод от курсовых разниц, что в отношении к стартовым инвестициям оказывается необычайно выгодным видом вложений.


Существующие способы оценки рисков инвестиций

Всякая наука хороша тогда, когда ей удается пользоваться математикой. Также и при оценке рисков мы должны применять не только качественные суждения об этих рисках, но и методы их количественного анализа.

В литературе по инвестициям в ценные бумаги очень часто под риском вложений в бумагу понимается ее волатильность (колеблемость относительно среднего значения). Имеется мнение, с которым я солидарен, что волатильность не может отражать инвестиционного риска в силу того, что болезненность убытков для инвестора несопоставима с удовлетворенностью прибылью. Поэтому отклонения котировок от ожидаемых значений в большую и в меньшую сторону неравноценны. Тем не менее, когда это не оговорено особо, под риском я понимаю волатильность.

Обзор состояния теории оценки финансовых рисков представлен в [1.2].

Главная проблема оценивания инвестиционных рисков состоит в том, что события, происходящие на фондовом рынке, часто не обладают свойством устойчивой повторяемости и однородности. Поэтому применение в анализе такого распространенного инструмента, как вероятностей, наталкивается на серьезные препятствия модельного характера. Рассмотрим подробнее.

Вероятности – это исторически первый способ учета неопределенности при принятии решений. Лица, специализирующиеся на азартных играх, были заинтересованы в оценке частот тех или иных исходов выпадания игральных костей или комбинаций карт, чтобы, реализуя серию из достаточного числа игр, придерживаться определенных фиксированных игровых стратегий ради достижения некоторого (пусть даже небольшого) выигрыша. При этом с самого начала было ясно, что исследованная частота тех или иных исходов не есть характеристика единичного события (одной игры), а полного их множества, позднее названного генеральной совокупностью событий.

Успешное применение вероятностных методов в статистике конца XIX века (при исследовании массовых и статистически однородных демографических процессов) сделало методы теории вероятностей широко распространенными во всех сферах жизни, особенно с развитием технической кибернетики во второй половине XX века. Использование вероятностей при учете случайности, неопределенности, ожидаемости событий приобрело эксклюзивный характер. Наиболее оправданным такое применение оказалось там, где речь шла об однородных событиях массового характера, а именно - в теории массового обслуживания и в технической теории надежности.

Однако, начиная с 50-х годов, в академической науке появились работы, ставящие под сомнение тотальную применимость вероятностной теории к учету неопределенности. Авторы этих работ закономерно отмечали, что классическая вероятность аксиоматически определена как характеристика генеральной совокупности статистически однородных случайных событий. В том случае, если статистической однородности нет, то применение классических вероятностей в анализе оказывается незаконным.

Реакцией на эти вполне обоснованные замечания стали фундаментальные работы Сэвиджа, Пойа, Кайберга, Фишберна, де Финетти и других, где обосновывалось введение неклассических вероятностей, не имеющих частотного смысла, а выражающих познавательную активность исследователя случайных процессов или лица, вынужденного принимать решения в условиях дефицита информации. Так появились субъективные (аксиологические) вероятности. При этом подавляющее большинство научных результатов из классической теории вероятностей перекочевало в теорию аксиологических вероятностей - и, в частности, логико-вероятностные схемы дедуктивного вывода интегральных вероятностей сложных событий на основе перебора полного множества исходных гипотез о реализации простых событий, входящих составными частями в исследуемое сложное событие. Эти схемы были названы импликативными.

Подробно о развитии теории вероятностей в ХХ веке написана блестящая, на мой взгляд, монография [1.3].

Однако появление неклассических вероятностей не было единственной реацией на возникшую проблему. Необходимо отметить также всплеск интереса к минимаксным подходам, а также зарождение теории нечетких множеств. Рассмотрим по порядку.

Минимаксные подходы ставят своей целью отказаться от учета неопределенности "весовым методом". То есть, когда оценивается некий ожидаемый интегральный эффект, его формула не представляет собой свертки единичных эффектов, когда в качестве весов такой свертки выступают экспертные оценки или вероятности реализации этих эффектов. Из всего поля допустимых реализаций (сценариев) минимаксные методы выбирают два, при которых эффект принимает последовательно максимальное или минимальное значение. При этом лицу, принимающему решения (ЛПР) ставится в обязанность отреагировать на ситуацию таким образом, чтобы добиться наилучших результатов в наихудших условиях. Считается, что такое поведение ЛПР является наиболее оптимальным.

Оппонируя минимаксным подходам, исследователи замечают, что ожидаемость наихудших сценариев может оказаться крайне низкой, и настраивать систему принятия решений на наихудший исход означает производить неоправданно высокие затраты и создавать необоснованные уровни всевозможных резервов. Компромиссным способом применять минимаксные подходы является использование метода Гурвица [1.4, 1.5], когда два экстремальных сценария (наихудший и наилучший) учитываются совместно, а в качестве веса в свертке сценариев выступает параметр l, уровень которого задается ЛПР. Чем больше l, тем оптимистичнее настроено ЛПР. Модифицированный интервально-вероятностный метод Гурвица учитывает дополнительную информацию о соотношении вероятностей сценариев, с учетом того, что точное значение сценарных вероятностей неизвестно.

Поговорим теперь о теории нечетких множеств, заложенной в фундаментальной книге Лофти Заде [1.6]. Первоначальным замыслом этой теории было построить функциональное соответствие между нечеткими лингвистическими описаниями (типа "высокий", "теплый" и т.д.) и специальными функциями, выражающими степень принадлежности значений измеряемых параметров (длины, температуры, веса и т.д.) упомянутым нечетким описаниям. Там же в [1.6] были введены так называемые лингвистические вероятности - вероятности, заданные не количественно, а при помощи нечетко-смысловой оценки.

Впоследствии диапазон применимости теории нечетких множеств существенно расширился. Сам Заде определил нечеткие множества как инструмент построения теории возможностей [1.7]. С тех пор научные категории случайности и возможности, вероятности и ожидаемости получают тоеретическое разграничение.

Следующим достижением теории нечетких множеств является введение в обиход т.н. нечетких чисел как нечетких подмножеств специализированного вида, соответствующих высказываниям типа "значение переменной примерно равно а". С их введением оказалось возможным прогнозировать будущие значения параметров, которые ожидаемо меняются в установленном расчетном диапазоне. Вводится набор операций над нечеткими числами, которые сводятся к алгебраичесим операциям с обычными числами при задании определенного интервала достоверности (уровня принадлежности).

Прикладные результаты теории нечетких множеств не заставили себя ждать. Для примера: сегодня зарубежный рынок так называемых нечетких контроллеров (разновидность которых установлена даже в стиральных машинах широко рекламируемой марки LG) обладает емкостью в миллиарды долларов. Нечеткая логика, как модель человеческих мыслительных процессов, встроена в системы искусственного интеллекта и в автоматизированные средства поддержки принятия решений (в частности, в системы управления технологическими процессами).

Начиная с конца 70-х годов, методы теории нечетких множеств начинают применяться в экономике. Отметим здесь монографию [1.8], в которой представлен широкий спектр возможных применений этой теории - от оценки эффективности инвестиций до кадровых решений и замен оборудования, приводятся соответствующие математические модели.

Позволю себе высказать мнение относительно перспектив применения теории вероятностей и теории нечетких множеств в экономических задачах.

Существенным преимуществом теории вероятностей является многовековой исторический опыт использования вероятностей и логических схем на их основе. Однако, когда неопределенность относительно будущего состояния объекта исследования теряет черты статистической неопределенности, классическая вероятность, как измеримая в ходе испытаний характеристика массовых процессов, уходит в небытие. Ухудшение информационной обстановки вызывает к жизни субъективные вероятности, однако тут же возникает проблема достоверности вероятностных оценок. ЛПР, присваивая вероятностям точечные значения в ходе некоего виртуального пари, исходит из соображений собственных экономических или иных предпочтений, которые могут быть деформированы искаженными ожиданиями и пристрастиями. Это же замечание справедливо и в том случае, когда оценкой вероятностей занимается не ЛПР, а сторонний эксперт.

При выборе оценок субъективных вероятностей часто ссылаются на известный принцип Гиббса-Джейнса: среди всех вероятностных распределений согласованных с исходной информацией о неопределенности соответствующего показателя, рекомендуется выбирать то, которому отвечает наибольшая энтропия. Многие исследователи, в том числе и автор настоящей работы, прибегали к этому принципу для обоснования вероятностных гипотез в структуре допущений исходной модели (назовем работы [1.9], [1.10]). Однако законным возражением против этого принципа, выдвинутым в последнее время, является то, что принцип максимума энтропии не обеспечивает автоматически монотонности критерия ожидаемого эффекта [1.5]. Отсюда следует, что принцип максимума энтропии должен дополняться граничными условиями применимости этого критерия при выборе вероятностных распределений.

В случае же применения нечетких чисел к прогнозу параметров от ЛПР требуется не формировать точечные вероятностные оценки, а задавать расчетный коридор значений прогнозируемых параметров. Тогда ожидаемый эффект оценивается экспертом также как нечеткое число со своим расчетным разбросом (степенью нечеткости). Здесь возникают инженерные преимущества метода, основанного на нечеткостях, т.к. исследователь оперирует не косвенными оценками (куда относим и вероятности), а прямыми проектными данными о разбросе параметров, что есть хорошо известная практика интервального подхода к проектным оценкам.

Что же касается оценки риска принятия решения в условиях неопределенности, то субъектно-вероятностные и нечетко-множественные методы предоставляют исследователю здесь примерно одинаковые возможности. Степень устойчивости решений верифицируется в ходе анализа чувствительности решения к колебаниям исходных данных, и эта устойчивость может оцениваться аналитически.

Итак, на стороне вероятностных методов оказывается традиция, а на стороне нечетко-множественных подходов - удобства в инженерном применении и повышенная степень обоснованности, поскольку в нечетко-множественный расчет попадают все возможные сценарии развития событий (вообще говоря, образующие непрерывный спектр), чего не скажешь, например, о схеме Гурвица, настроенной на конечное дискретное множество сценариев. Ну и потом, за нечеткими множествами остается эксклюзив количественной интерпретации качественных факторов, выраженных в терминах естественного языка.


Роль предпочтений и ожиданий инвестора

Ответственность за принятое решение всегда лежит на том, кто его принимает. И в этом смысле ссылки инвестора на то, что «вот эти бумаги мне посоветовал купить консультант, а сейчас они упали, подать сюда консультанта», являются несостоятельными. Консультант не отвечает за решения инвестора, он отвечает только за достоверность и полноту той информации, что он выдает. Назвав какие-то акции «стоящими», консультант вовсе не гарантирует того, что они будут приносить доход. Также консультант не может гарантировать дохода по облигациям, так как он не страхует дефолтных рисков.

Поэтому, раз решение – это прерогатива самого инвестора, то и анализ своих собственных решений он должен проводить самостоятельно.

Например, рассматривая фундаментальные характеристики бумаги, инвестор оценивает текущее значение показателя P/E (цена к доходам), которое равно 20. «Много» это или «мало», вот вопрос. И вот на этом этапе инвестор может обратиться к консультанту. Точным ответом на вопрос инвестора будет гистограмма, где по оси Х отложены значения показателя P/E, а по оси Y – то, с какой относительной частотой выпадают те или иные значения показателя для предприятий той же отрасли, что и объект анализа.

Анализируя гистограмму, инвестор может задаться вопросом, почему одним компаниям позволено иметь большие значения P/E, а другим – меньшие, и какой уровень P/E следует считать объективным. Инвестор опять беспокоит своего консультанта, и тот выдает заключение. Оказывается, доходность бумаги состоит в обратном отношении к ее надежности, и зачастую люди покупают высококапитализированные компании, имея ввиду в первую очередь низкий риск дефолта, а во вторую очередь рассматривая уже соображения, связанные с доходностью. Что до объективного уровня, то все зависит от периода анализа. Например, для высокотехнологичных компаний в 1999-2000 г.г. характерным уровнем P/E был уровень в несколько десятков единиц. Сегодня же типовое значение – 10-15, потому что произошла коррекция.

И вот инвестор созрел для того, чтобы принимать решение. Он говорит себе: «Сегодня у компании Х цена акций $20, а соотношение P/E составляет 41. Ее капитализация – 100 млрд долларов, однако я считаю, что компания все равно переоценена, и такой уровень P/E – слишком высокий. Для этой компании я считаю приемлемым диапазон P/E порядка 30-35. И даже если сегодня цена компании растет, я тем не менее нахожу, что этот рост ненадежен и может смениться спадом. Я буду покупать эти акции при целевой цене на уровне $15-$17, что соответствует моим ожиданиям».

Таким образом, инвестор произвел свою самостоятельную оценку ситуации и принял решение. При этом в основаниях этого решения мы можем увидеть:
ожидания – связанные с перспективами роста данных акций;
нечеткую классификацию, когда инвестор сопоставлял текущую капитализацию компании с ее P/E и производил анализ уровня показателя.

Как мы покажем дальше, все, что инвестор говорит на словах, он может вполне трансформировать в описания на языке математики. И тогда ожидания, предпочтения и нечеткие оценки, сделанные инвестором, явятся исходной инвформацией для моделирования предпосылок для принятия (непринятия) инвестиционного решения.

Оценивая акции, инвестор может производить и макроэкономические оценки, например, перспектив тех или иных отраслей или даже национальной экономики. Уже в том утверждении, что США проходят фазу рецессии, содержится огромное количество информации, которую необходимо учитывать для принятии решения. Подробно об этом можно прочесть в главе 9 книги, а сейчас ограничимся тем замечанием, что рецессия ставит одни отрасли в привелегированное положение, а другие отрасли оказываются ущемленными. Значит, идет межотраслевое перераспределение инвестиционных рисков, которое надо иметь ввиду.

Инвестор, покупая или продавая акции, должен составить себе мнение о том, какой рынок сейчас одерживает победу – «медвежий» или «бычий». Это дает ему основания считать, «что на «медвежьем» рынке переоцененные активы, скорее всего, упадут, а недооцененные, если и упадут, то неглубоко. И наоборот: на «бычем» рынке недооцененные активы, скорее всего, возрастут, а переоцененные, если и возрастут, то несильно». Все, что отмечено курсивом в этих закавыченных предложениях, представляет собой предмет оценки инвестором текущего состояния рынка и его переспектив. Подробно об этом я пишу в конце главы 7 книги.




Выводы

Фондовый рынок, как мы здесь показали, обладает существенным уровнем неопределенности, что влечет неустранимый риск, сопровождающий принятие инвестиционных решений. В ряде частных случаев традиционные методы анализа этого риска оказываются несостоятельными, так как они ориентируются на традиционный тип неопределенности, связанный с поведением однотипных объектов с неизменными свойствами. Связанные с такой банальной неопределенностью риски сравнительно легко оцениваются на базе широко известных методов теории вероятностей. Однако в большинстве случаев фондовый рынок является ненадлежащим объектом для классического статистического исследования, так как объекты выборки из генеральной совокупности не обладают свойством статистической однородности, а случайные процессы не имеют постоянных параметров, так что никакие статистические гипотезы о виде указанных процессов подтверждены быть не могут.

Таким образом, борьба с неопределенностью на фондовом рынке обнаруживает свою бесперспективность, если такую борьбу вести традиционными способами. Необходимо кардинально менять подход к моделированию имеющейся информационной ситуации. Какую роль в этом могут сыграть нечеткие множества, будет ясно из дальнейшего.

Мы разобрали здесь основные виды фондовых активов, пригодных для инвестиций, и показали, что каждому типу активов отвечает собственный набор инвестиционных рисков, и соотношение этих рисков колеблется не только от инструмента к инструменту, но и от страны к стране, от отрасли к отрасли и от эмитента к эмитенту. Всякой бумаге можно сопоставить карту рисков, где, наподобие мелей в фарватере реки, будут нанесены все уязвимые места данной бумаги. Однако создание такой карты требует кропотливого индивидуального анализа.

Мы видим, что информация, содержащаяся в предпочтениях и ожиданиях инвестора, представляет собой очень ценный материал для моделирования. И нечеткость этих оценок, выраженных на естественном языке, может найти свое органичное переложение в формализмы теории нечетких множеств.


Базовые нечеткие описания для фондового менеджмента

Понятие квазистатистики

Прежде чем вводить определение квазистатистики, целесообразно определиться с исходным термином «статистика». Этот термин многозначен и имеет огромное количество определений. Я привожу часть из них, цитируя [2.1].

«Цель статистики должна состоять в исследовании закономерностей во взаимосвязях и отношениях, выделении абсолютного в относительных явлениях, в исследовании постоянства среди непостоянного и узнавания во вновь найденном уже открытого закона (J. Е. Worl. Eriaute-rungen zur Theorie der Statistik)». 

«Слово <статистика> происходит от слова <государство> (state пли Staat) и означает группу людей, живущих в общественном союзе; оно включает все характеристики их состояния (Encyclopaedia Britannica. 7th ed.)». 

«Статистика — это наука, функцией которой является сбор и упорядочивание данных, относящихся к физическому, социальному, политическому, финансовому, интеллектуальному и моральному состоянию и ресурсам государства или народа (New American Encyclopaedia)». 

«Статистика — методический индуктивный прием для нахождения и объяснения механизмов, действующих в человеческом обществе и природе, т. е. для вывода и объяснения законов, по которым эти механизмы функционируют, и для обнаружения и исследования причинной связи, которая имеется между отдельными феноменами природы и человеческого общества; а именно, такой прием, который ведет к точному количественному определению на основе систематических массовых наблюдений над этими феноменами (A. Wagner. Statistik. Bluntschli Brater's Deutsches Staatsworterbuch)». 

«Статистика — это описание любого класса фактов, выраженных числами (Н. С. Adams. Statistics. Johnson's Universal Cyclopaedia)». 

«Статистика есть; 1. Толкуемое как единственное число. В современном употреблении — раздел исследований, имеющий в качестве объекта сбор и обработку числовых фактов или данных относительно либо сферы человеческой деятельности, либо явлений природы. 2. Толкуемое во множественном числе. Числовые факты или данные, собранные и расклассифицированные (New Oxford Dictionary)». 

«Математическая статистика — раздел математики, посвященный математическим методам систематизации, обработки и использования статистических данных для научных и практических выводов. При этом статистическими данными называются сведения о числе объектов в какой-либо более или менее обширной совокупности, обладающих теми пли иными признаками (БСЭ, т. 26, 2-е изд., А, Н, Колмогоров. Математическая статистика).»

«Основным понятием математической статистики является выборка или совокупность наблюдений какого-либо количественного показателя (Ю. В. Линник. Метод наименьших квадратов и основы математике-статистической теории обработки наблюдений)». 

«В наше время принято считать, что математическая статистика есть наука, изучающая теорию принятия решений в условиях неопределенности. Это определение математической статистики выкристаллизовывалось в результате многих лет ее развития. Достоинство этого определения состоит в том, что оно в сжатой и ясной форме излагает научное существо статистики (Г. Чернов, Л. Мозес. Элементарная теория статистических решений. 1962)». 

«Статистику иногда определяют как искусство и науку количественной обработки наблюдений, подверженных изменениям (Е. V. Lewis. Statistical Analysis. Ideas and Methods)». 

«Как известно, статистику часто определяют как науку о методах исследования закономерностей массовых процессов. Для математической статистики это общее определение можно модифицировать следующим образом: математическая статистика есть наука о методах умозаключения, о свойствах соответствующей генеральной совокупности на основе наблюдений над репрезентативной выборочной совокупностью, причем данные наблюдений отбираются из генеральной совокупности в случайном порядке.  Таким образом, основная задача математической статистики — разработка методов, позволяющих обобщать результаты наблюдений (3. Павловский. Введение в математическую статистику)».

Во всех перечисленных определениях есть общее зерно, которое собственно, и относится к статистике в самом общем смысле слова, и это зерно в следующем. Мы имеем некий набор наблюдений по одному объекту или по совокупности объектов. Причем мы предполагаем, что за случайной выборкой наблюдений из гипотетической их генеральной совокупности  кроется некий фундаментальный закон распределения, который сохранит свою силу еще на определенный период времени в будущем, что позволит нам прогнозировать тренд будуших наблюдений и расчетный диапазон отклонений этих наблюдений от расчетных ожидаемых трендовых значений.

Если мы договорились, что все наблюдения совершались в неизменных однотипных внешних условиях и/или наблюдались объекты с одинаковыми свойствами по факту, например, их появления по одной и той же причине, то мы оцениваем и подтверждаем искомый закон распределения частотным методом. Разбивая весь допустимый диапазон наблюдаемого параметра на ряд равных интервалов, мы можем подсчитать, сколько наблюдений попало в каждый выбранный интервал, то есть построить гистограмму. Известными методами мы можем перейти от гистограммы к плотности вероятностного распределения, параметры которого можно оптимальным образом подобрать. Таким образом, идентификация статистического закона завершена.

Если же мы имеем дело с «дурной» неопределенностью, когда у нас нет достаточного количества наблюдений, чтобы вполне корректно подтвердить тот или иной закон распределения, или мы наблюдаем объекты, которые, строго говоря, нельзя назвать однородными, тогда классической статистической выборки нет.

В то же время, мы, даже не имея достаточного числа наблюдений, склонны подразумевать, что за ними стоит проявление некоторого закона. Мы не можем оценить параметры этого закона вполне точно, но мы можем прийти к определенному соглашению о виде этого закона и о диапазоне разброса ключевых параметров, входящих в его математическое описание. И вот здесь уместно ввести понятие квазистатистики.

Квазистатистика – эта выборка наблюдений из их генеральной совокупности, которая считается недостаточной для идентификации вероятностного закона распределения с точно определенными параметрами, но признается достаточной для того, чтобы с той или иной субъективной степенью достоверности обосновать закон наблюдений в вероятностной или любой иной форме, причем параметры этого закона будут заданы по специальным правилам, чтобы удовлетворить требуемой достоверности идентификации закона наблюдений.

Такое определение квазистатистики дает расширительное понимание вероятностного закона, когда он имеет не только частотный, но и субъективно-аксиологический смысл. Здесь намечены контуры синтеза вероятности в классическом смысле - и вероятности, понимаемой как структурная характеристика познавательной активности эксперта-исследователя.

Также это определение намечает широкое поле для компромисса в том, что считать достаточным объемом выборки, а что – нет. Например, эксперт, оценивая финансовое положение предприятий машиностроительной отрасли, понимает, что каждое предприятие отрасли уникально, занимает свою рыночную нишу и т.д., и поэтому классической статистики нет, даже если выборка захватывает сотни предприятий. Тем не менее, эксперт, исследуя выборку какого-то определенного параметра, подмечает, что для большинства работающих предприятий значения данного параметра группируются внутри некоторого расчетного диапазона (рис. 2.1). И эта закономерность дает эксперту основания утверждать, что имеет место закон распределения, и далее эксперт может подыскивать этому закону вероятностную или, к примеру, нечетко-множественную форму.



Рис 2.1. Группировка показателей внутри расчетного диапазона значений

Аналогичные рассуждения можно провести, если эксперт наблюдает один параметр единичного предприятия, но во времени. Ясно, что в этом случае статистическая однородность наблюдений отсутствует, поскольку со временем непрерывно меняется рыночное окружение фирмы, условия ее хозяйствования, производственные факторы и т.д. Тем не менее, эксперт, оценивая некоторое достаточно приличное количество наблюдений, может сказать, что вот это состояние параметра типично для фирмы, а вот это – из ряда вон. Таким образом, эксперт высказывается о законе распределения параметра таким образом, что классифицирует все наблюдения нечетким, лингвистическим способом, и это уже само по себе есть факт генерации немаловажной для принятия решений информации. И, раз закон распределения сформулирован, то эксперт имел дело с квазистатистикой.

Понятие квазистатистики, введенное здесь, дает широкий простор для применения нечетких описаний для моделирования законов, по которым проявляется та или иная совокупность наблюдений. Строго говоря, не постулируя квазистатистики, нельзя вполне обоснованно с научной точки зрения моделировать неоднородные и ограниченные по объему наблюдения процессы, протекающие на фондовом рынке и в целом в экономике.


Ключевые понятия теории нечетких множеств

В монографиях [П3, П4, П5], на которые я сослался в предисловии, основные нечеткие описания изложены предельно доходчиво. Однако некоторые важные формализмы, которые необходимы для нашего рассмотрения, опущены. Поэтому оказывается необходимым в порядке справки провести последовательное изложение основ теории нечетких множеств.


Носитель

Носитель U – это универсальное множество, к которому относятся все результаты наблюдений в рамках оцениваемой квазистатистики. Например, если мы наблюдаем возраст занятых в определенных отраслях экономики, то носитель – это отрезок вещественной оси [16, 70], где единицей измерения выступают годы жизни человека.


Нечеткое множество

Нечеткое множество А – это множество значений носителя, такое, что каждому значению носителя сопоставлена степень принадлежности этого значения множеству А. Например: буквы латинского алфавита X, Y, Z безусловно принадлежат множеству Alphabet = {A, B, C, X, Y, Z}, и с этой точки зрения множество Alphabet – четкое. Но если анализировать множество «Оптимальный возраст работника», то возраст 50 лет принадлежит этому нечеткому множеству только с некоторой долей условности m, которую называют функцией принадлежности.


Функция принадлежности

Функция принадлежности mА(u) – это функция, областью определения которой является носитель U, u I U, а областью значений – единичный интервал [0,1]. Чем выше mА(u), тем выше оценивается степень принадлежности элемента носителя u нечеткому множеству А. Например [2.2], на рис. 2.2 представлена функция принадлежности нечеткого множества «Оптимальный возраст работающего», полученная на основании опроса ряда экспертов.

Рис. 2.2. Вид функции принадлежности

Видно что возраст от 20 до 35 оценивается экспертами как бесспорно оптимальный, а от 60 и выше – как бесспорно неоптимальный. В диапазоне от 35 до 60 эксперты проявляют неуверенность в своей классификации, и структура этой неуверенности как раз и передается графиком функции принадлежности.


Лингвистическая переменная

Заде определяет лингвистическую переменную так:

W = , (2.1)

где w - название переменной, Т – терм-множество значений, т.е. совокупность ее лингвистических значений, U – носитель, G – синтаксическое правило, порождающее термы множества Т, М – семантическое правило, которое каждому лингвистическому значению w ставит в соответствие его смысл М(w), причем М(w) обозначает нечеткое подмножество носителя U.

К примеру, зададим лингвистическую переменную W = «Возраст работника». Определим синтаксическое правило G как определение «оптимальный», налагаемое на переменную W. Тогда полное терм-множество значений T = { T1 = Оптимальный возраст работника, T2 = Неоптимальный возраст работника }. Носителем U выступает отрезок [20, 70], измеряемый в годах человеческой жизни. И на этом носителе определены две функции принадлежности: для значения T1 - mT1(u), она изображена на рис. 2.2, для T1 - mT2(u), причем первая из них отвечает нечеткому подмножеству M1, а вторая – M2. Таким образом, конструктивное описание лингвистической переменной завершено.


Операции над нечеткими подмножествами

Для классических множеств вводятся операции:
пересечение множеств – операция над множествами А и В, результатом которой является множество С = А C В, которое содержит только те элементы, которые принадлежат и множеству A и множеству B;
объединение множеств - операция над множествами А и В, результатом которой является множество С = А E В, которое содержит те элементы, которые принадлежат множеству A или множеству B  или обоим множествам;
отрицание множеств - операция над множеством А, результатом которой является множество С = O А, которое содержит все элементы, которые принадлежат универсальному множеству, но не принадлежат множеству A.

Заде предложил набор аналогичных операций над нечеткими множествами через операции с функциями принадлежности этих множеств. Так, если множество А задано функцией mА(u), а множество В задано функцией mВ(u), то результатом операций является множество С с функцией принадлежности mС(u), причем:
если С = А C В, то mС(u) = min(mА(u), mВ(u)); (2.2)
если С = А E В, то mС(u) = max(mА(u), mВ(u)); (2.3)
если С = O А, то mС(u) = 1-mА(u). (2.4)

<< Предыдущая

стр. 2
(из 3 стр.)

ОГЛАВЛЕНИЕ

Следующая >>