ic solutions of second order ordinary di¬erential equations of arbitrary rank,

Methods Appl. Analysis, (1998).

229. A. H. Nayfeh, Perturbation Methods, Wiley, New York, 1973. Good reference

on the method of multiple scales.

230. G. Nemeth, Polynomial approximation to the function ψ(a, c, x), tech. rep.,

´

Central Institute for Physics, Budapest, 1965.

231. , Chebyshev expansion of Gauss™ hypergeometric function, tech. rep.,

Central Institute for Physics, Budapest, 1965.

232. , Chebyshev expansions of the Bessel function. I, Proceedings of the

KFKI, 14 (1966), p. 157.

233. , Chebyshev expansions of the Bessel functions. II, Proceedings of the

KFKI, 14 (1966), pp. 299“309.

ActaApplFINAL_OP92.tex; 21/08/2000; 16:16; no v.; p.100

101

Exponential Asymptotics

234. , Note on the zeros of the Bessel functions, tech. rep., Central Institute

for Physics, Budapest, 1969.

235. , Chebyshev series for special functions, Tech. Rep. 74“13, Central Insti-

tute for Physics, Budapest, 1974.

236. , Mathematical Approximation of Special Functions: Ten Papers on

Chebyshev Expansions, Nova Science Publishers, New York, 1992. 200 pp.

[Tables, with some theory and coe¬cient asymptotics, for Bessel functions,

Airy functions, zeros of Bessel functions, and generalized hypergeometric func-

tions.].

237. A. B. Olde Daalhuis, Hyperasymptotic expansions of con¬‚uent hypergeo-

metric functions, IMA J. Appl. Math., 49 (1992), pp. 203“216.

238. , Hyperasymptotics and the Stokes phenomenon, Proc. Roy. Math. Soc.

Edinburgh A, 123 (1993), pp. 731“743.

239. , Hyperasymptotic solutions of second-order linear di¬erential equations

II, Methods of Applicable Analyis, 2 (1995), pp. 198“211.

240. , Hyperterminants I, J. Comput. Appl. Math., 76 (1996), pp. 255“264.

Convergent series for the generalized Stieltjes functions that appear in hyper-

asymptotic expansions.

241. , Hyperasymptotic solutions of higher order linear di¬erential equations

with a singularity of rank one, Proc. R. Soc. London A, 454 (1997), pp. 1“29.

Borel-Laplace transform; new method to compute Stokes multipliers.

242. , Hyperterminants, II, J. Comput. Appl. Math., 89 (1998), pp. 87“95.

Convergent and computable expansions for hyperterminants so that these can

be easily evaluated for use with hyperasymptotic perturbation theories. The

expansions involve hypergeometric (2 F1 ) functions, but these can be computed

by recurrence.

243. A. B. Olde Daalhuis, S. J. Chapman, J. R. King, J. R. Ockendon, and

R. H. Tew, Stokes phenomenon and matched asymptotic expansions, SIAM

J. Appl. Math., 6 (1995), pp. 1469“1483.

244. A. B. Olde Daalhuis and F. W. J. Olver, Exponentially improved asymp-

totic solutions of ordinary di¬erential equations. II. Irregular singularities of

rank one, Proc. Roy. Soc. London A, 445 (1994), pp. 39“56.

245. , Hyperasymptotic solutions of second-order linear di¬erential equations.

I, Methods of Applicable Analysis, 2 (1995), pp. 173“197.

246. , On the calculation of Stokes multipliers for linear second-order di¬er-

ential equations, Methods of Applicable Analysis, 2 (1995), pp. 348“367.

247. , Exponentially-improved asymptotic solutions of ordinary di¬erential

equations. II: Irregular singularities of rank one, Proc. Roy. Soc. London A,

2 (1995), pp. 39“56.

248. , On the asymptotic and numerical solution of ordinary di¬erential equa-

tions, SIAM Rev., 40 (1998). In press.

249. F. W. J. Olver, Asymptotics and Special Functions, Academic, New York,

1974.

250. F. W. J. Olver, On Stokes™ phenomenon and converging factors, in Asymp-

totic and Computational Analysis, R. Wong, ed., Marcel Dekker, New York,

1990, pp. 329“356.

251. , Uniform, exponentially-improved asymptotic expansions for the gener-

alized exponential integral, SIAM J. Math. Anal., 22 (1991), pp. 1460“1474.

252. , Uniform, exponentially-improved asymptotic expansions for the con-

¬‚uent hypergeometric function and other integral transforms, SIAM J. Math.

Anal., 22 (1991), pp. 1475“1489.

253. , Exponentially-improved asymptotic solutions of ordinary di¬erential

equations I: The con¬‚uent hypergeometric function, SIAM J. Math. Anal., 24

(1993), pp. 756“767.

ActaApplFINAL_OP92.tex; 21/08/2000; 16:16; no v.; p.101

102 John P. Boyd

254. , Asymptotic expansions of the coe¬cients in asymptotic series solutions

of linear di¬erential equations, Methods of Applicable Analysis, 1 (1994),

pp. 1“13.

255. J. R. Oppenheimer, Three notes on the quantum theory of aperiodic e¬ects,

Phys. Rev., 31 (1928), pp. 66“81. Shows that Zeeman e¬ect generates an

imaginary part to the energy which is exponentially small in the reciprocal of

the perturbation parameter.

256. R. B. Paris, Smoothing of the Stokes phenomenon for high-order di¬erential

equations, Proc. Roy. Soc. London A, 436 (1992), pp. 165“186.

257. , Smoothing of the Stokes phenomenon using Mellin-Barnes integrals, J.

Comput. Appl. Math., 41 (1992), pp. 117“133.

258. R. B. Paris and A. D. Wood, A model for optical tunneling, IMA J. Appl.

Math., 43 (1989), pp. 273“284. Exponentially small leakage from the ¬ber.

259. , Exponentially-improved asymptotics for the gamma function, J. Com-

put. Appl. Math., 41 (1992), pp. 135“143.

260. , Stokes phenomenon demysti¬ed, IMA Bulletin, 31 (1995), pp. 21“28.

Short review of hyperasymptotics.

261. V. L. Pokrovskii, Science and life: conversations with Dau, in Landau, the

Physicist and the Man: Recollections of L. D. Landau, I. M. Khalatnikov,

ed., Pergamon Press, Oxford, 1989. Relates the amusing story that the Nobel

Laureate Lev Landau believed the Prokrovskii-Khalatnikov(1961) “beyond-

all-orders” method was wrong. The correct answer (but with incorrect deriva-

tion) is given in the Landau-Lifschiftz textbooks. Eventually, Landau realized

his mistake and apologized.

262. V. L. Pokrovskii and I. M. Khalatnikov, On the problem of above-barrier

re¬‚ection of high-energy particles, Soviet Phys. JETP, 13 (1961), pp. 1207“

1210. Applies matched asymptotics in the complex plane to compute the

exponentially small re¬‚ection which is missed by WKB.

263. Y. Pomeau, A. Ramani, and G. Grammaticos, Structural stability of

the Korteweg-deVries solitons under a singular perturbation, Physica D, 21

(1988), pp. 127“134. Weakly nonlocal solitons of the FKdV equation; complex-

plane matched asymptotics.

264. I. Proudman and J. R. A. Pearson, Expansions at small Reynolds numbers

for the ¬‚ow past a sphere and a circular cylinder, J. Fluid Mech., 2 (1957),

pp. 237“262. Log-and-powers expansion.

265. G. Raithby, Laminar heat transfer in the thermal entrance region of circular

tubes and two-dimensional rectangular ducts with wall suction and injection,

Internat. J. Heat Mass Transfer, 14 (1971), pp. 223“243.

266. J. P. Ramis and R. Schafke, Gevrey separation of fast and slow variables,

Nonlinearity, 9 (1996), pp. 353“384. Iterated averaging transformations of

perturbed one phase Hamiltonian systems, not necessarily conservative.

267. S. C. Reddy, P. J. Schmid, and D. S. Henningson, Pseudospectra of the

Orr-Sommerfeld equation, SIAM J. Appl. Math., 53 (19), pp. 15“47. Expo-

nentially sensitive eigenvalues.

268. L. Reichel and N. L. Trefethen, The eigenvalues and pseudo-eigenvalues

of Toeplitz matrices, Linear Algebra with Applications, 162 (1992), pp. 153“

185.

269. W. P. Reinhardt, Pad´ summation for the real and imaginary parts of atom-

e

ic Stark eigenvalues, Int. J. Quantum Chem., 21 (1982), pp. 133“146. Two

successive Pad´ transformations are used to compute the exponentially small

e

imaginary part of the eigenvalue.

270. L. F. Richardson, The deferred approach to the limit. Part I.” Single lat-

tice, Phil. Trans. Royal Soc., 226 (1927), pp. 299“349. Invention of Richard-

son extrapolation, which is an asymptotic but divergent procedure because

ActaApplFINAL_OP92.tex; 21/08/2000; 16:16; no v.; p.102

103

Exponential Asymptotics

of beyond-all-orders terms in the grid spacing h. Reprinted in Richardson™s

Collected Papers, ed. by O. M. Ashford et al.

271. , The deferred approach to the limit. Part I.“Single lattice, in Collected

Papers of Lewis Fry Richardson, O. M. Ashford, H. Charnock, P. G. Drazin,

J. C. R. Hunt, P.Smoker, and I. Sutherland, eds., Cambridge University Pres,

New York, 1993, pp. 625“678.

272. W. A. Robinson, The existence of multiple solutions for the laminar ¬‚ow in

a uniformly porous channel with suction at both walls, J. Engineering Math.,

10 (1976), pp. 23“40. Exponentially small di¬erence between two distinct

nonlinear solutions.

273. J. B. Rosser, Transformations to speed the convergence of series, Journal of

Research of the National Bureau of Standards, 46 (1951), pp. 56“64. Conver-

gence factors; improvements to asymptotic series.

274. , Explicit remainder terms for some asymptotic series, Journal of Ratio-

nal Mechanics and Analysis, 4 (1955), pp. 595“626.

275. J. Scheurle, J. E. Marsden, and P. Holmes, Exponentially small estimate

for separatrix splitting, in Asymptotics Beyond All Orders, H. Segur, S. Tan-

veer, and H. Levine, eds., Plenum, Amsterdam, 1991, pp. 187“196. Show that

the splitting is proportional to ν( ) exp(’π/(2 )) where ν( ) has as essential

singularity at = 0 and must be represented as a Laurent series rather than

a power series. No examples of essentially-singular ν( ) for nonlocal solitons

are as yet known.

276. B. I. Schraiman, On velocity selection and the Sa¬man-Taylor problem,

Phys. Rev. Letters, 56 (1986), pp. 2028“2031.

277. Z. Schulten, D. G. M. Anderson, and R. G. Gordon, An algorithm for

the evaluation of the complex Airy functions, J. Comput. Phys., 31 (1979),

pp. 60“75. An alternative to hyperasymptotics ” a very e¬cient one.

278. H. Segur and M. D. Kruskal, On the nonexistence of small amplitude

breather solutions in φ4 theory, Phys. Rev. Letters, 58 (1987), pp. 747“750.

Title not withstanding, the φ4 breather does exist, but is nonlocal.

279. H. Segur, S. Tanveer, and H. Levine, eds., Asymptotics Beyond All

Orders, Plenum, New York, 1991. 389pp.

280. A. V. Sergeev, Summation of the eigenvalue perturbation series by multival-

ued pad´ approximants” application to resonance problems and double wells,

e

J. Phys. A.: Math. Gen., 28 (1995), pp. 4157“4162. Shows that Shafer™s gen-

eralization of Pad´ approximants ,when the approximant is the solution of a

e

quadratic equation with polynomial coe¬cients, converge to the lowest eigen-

value of the quantum quartic oscillator even when the perturbation parameter

(“coupling constant”) is real and negative and thus lies on the branch cut

of the eigenvalue. (Ordinary Pad´ approximants fail on the branch cut.).

e

281. A. V. Sergeev and D. Z. Goodson, Summation of asymptotic expansions of

multiple-valued functions using algebraic approximants: Application to anhar-

monic oscillators, J. Phys. A: Math. Gen., 31 (1998), pp. 4301“4317. Show

that Shafer™s (1974) generalization of Pad´ approximants can successfully sum

e

the exponentially small imaginary part of some functions with divergent pow-

er series, as illustrated through the quantum quartic oscillation with negative

coupling constant.

282. R. E. Shafer, On quadratic approximation, SIAM Journal of Numerical

Analysis, 11 (1974), pp. 447“460. Generalization of Pad´ approximants. A

e

function u(z), known only through its power series, is approximated by the

root of a quadratic equation. The coe¬cients of the quadratic are polynomials

which are chosen so that the power series of the root of the quadratic equation

will match the power series of u to a given order.

283. L. A. Skinner, Generalized expansions for slow ¬‚ow past a cylinder, Quart.

J. Mech. Appl. Math., 28 (1975), pp. 333“340. Log-and-power-series in Re.

ActaApplFINAL_OP92.tex; 21/08/2000; 16:16; no v.; p.103

104 John P. Boyd

284. M. A. Snyder, Chebyshev Methods in Numerical Approximation, Prentice-

Hall, Englewood Cli¬s, New Jersey, 1966. 150 pp.

285. B. Y. Sternin and V. E. Shatalov, Borel-Laplace Transform and Asymp-

totic Theory: Introduction to Resurgent Analysis, CRC Press, New York, 1996.

286. T. J. Stieltjes, Recherches sur quelques s´ries semi-convergentes, Annales

e

Scienti¬que de Ecole Normale Superieur, 3 (1886), pp. 201“258. Hyperasymp-

totic extensions to asymptotic series.

287. A. A. Suvernev and D. Z. Goodson, Perturbation theory for coupled anhar-

monic oscillators, J. Chem. Phys., 106 (1997), pp. 2681“2684. Computation

of complex-valued eigenvalues through quadratic Shafer-Pad™e approximants;

the imaginary parts are exponentially small in the reciprocal of the perturba-

tion parameter.

288. S. Tanveer, Analytic theory for the selection of Sa¬man-Taylor ¬nger in the

presence of thin-¬lm e¬ects, Proc. Roy. Soc. London A, 428 (1990), pp. 511“.

289. , Viscous displacement in a Hele-Shaw cell, in Asymptotics Beyond All

Orders, H. Segur, S. Tanveer, and H. Levine, eds., Plenum, Amsterdam, 1991,

pp. 131“154.

290. R. M. Terrill, Laminar ¬‚ow in a uniformly porous channel with large injec-

tion, Aeronautical Quarterly, 16 (1965), pp. 323“332.

291. , On some exponentially small terms arising in ¬‚ow through a porous

pipe, Quart. J. Mech. Appl. Math., 26 (1973), pp. 347“354.

292. R. M. Terrill and P. W. Thomas, Laminar ¬‚ow in a uniformly porous

pipe, Applied Scienti¬c Research, 21 (1969), pp. 37“67.

293. A. Tovbis, On exponentially small terms of solutions to nonlinear ordinary

di¬erential equations, Methods and Applications of Analysis, 1 (1994), pp. 57“

74.

294. L. N. Trefethen and D. Bau, III, Numerical Linear Algebra, SIAM,

Philadelphia, 1997.

295. P. D. Tuan and D. Elliott, Coe¬cients in series expansions for certain

classes of functions, Mathematics of Computation, 26 (1972), pp. 213“232.

296. B. L. van der Waerden, On the method of saddle points, Appl. Sci. Res.,

B2 (1951), pp. 33“45. Steepest descent for integral with nearly coincident

saddle point and pole.

297. M. Van Dyke, Perturbation Methods in Fluid Mechanics, Academic Press,

Boston, ¬rst ed., 1964.

298. , Perturbation Methods in Fluid Mechanics, Parabolic Press, Stanford,

California, 2d ed., 1975.

299. J.-M. Vanden-Broeck and R. E. L. Turner, Long periodic internal waves,

Phys. Fluids A, 4 (1992), pp. 1929“1935.

300. inberg, V. D. Mur, V. S. Popov, and A. V. Sergeev, Strong-

V. M. Va˜

¬eld Stark e¬ect, JETP Lett., 44 (1986), pp. 9“13. Shafer-Pad´ approximants

e

are used to compute the complex-valued eigenvalues of the hydrogen atom in

an electric ¬eld. The imaginary part is exponentially in the reciprocal of the

perturbation parameter.

301. A. Voros, Semi-classical correspondence and exact results: the case of the

spectra of homogeneous Schr¨dinger operators, J. Physique-Lett., 43 (1982),

o

pp. L1“L4.

302. , The return of the quartic oscillator: the complex WKB method, Ann.

Inst. H. Poincar´, Physique Th´orique, 39 (1983), pp. 211“338.

e e

, Schr¨dinger equation from O(¯ ) to o(¯ ∞ ), in Path Integrals from meV

303. o h h