Deville, M.: 1990, Chebyshev collocation solutions of ¬‚ow problems, in C. Canuto and

A. Quarteroni (eds), Spectral and High Order Methods for Partial Differential Equations:

Proceedings of the ICOSAHOM ™89 Conference in Como, Italy, North-Holland/Elsevier,

Amsterdam, pp. 27“38. Also in Comput. Meths. Appl. Mech. Engrg., vol. 80.

Deville, M. and Labrosse, G.: 1982, An algorithm for the evaluation of multi-dimensional

(direct and inverse) discrete Chebyshev transform, Journal of Computational and Applied

Mathematics 8, 293“304.

Deville, M. and Mund, E.: 1984, On a mixed one step/Chebyshev pseudospectral tech-

nique for the integration of parabolic problems using ¬nite element preconditioning,

in C. Brezinski, A. Draux, A. P. Magnus, P. Maroni and A. Ronveaux (eds), Polynomes

Orthogonaux et Applications: Proceedings of the Laguerre Symposium at Bar-le-Duc, num-

ber 1171 in Lecture Notes in Mathematics, Springer-Verlag, New York, pp. 399“407. This

article is in English; employs unusual implicit time-marching which is exact (instead

of second order) for time integration of the two slowest-decaying diffusion eigen-

modes.

Deville, M. and Mund, E.: 1985, Chebyshev pseudospectral solution of second-order el-

liptic equations with ¬nite element pre-conditioning, Journal of Computational Physics

60, 517“533.

Deville, M. and Mund, E.: 1991, Finite element preconditioning of collocation schemes for

advection-diffusion equations, in R. Beauwens and P. de Groen (eds), Proceedings of the

IMACS International Symposium on Iterative Methods in Linear Algebra, IMACS, North-

Holland, Amsterdam, pp. 181“190.

Deville, M., Haldenwang, P. and Labrosse, G.: 1981, Comparison of time integration (¬nite

difference and spectral)) for the nonlinear Burgers™ equation, in H. Viviond (ed.), Pro-

ceedings of the 4th GAMMConference on Nuemrical Methods in Fluid Mechanics, Vieweg,

Braunschweig.

Deville, M., Kleiser, L. and Montigny-Rannou, F.: 1984, Pressure and time treatment for

Chebyshev spectral solution of a Stokes problem, Internat. J. Numer. Meth. Fluids

4, 1149“1163. Backward Euler is raised by Richardson extrapolation to a second or-

der time-marching. Four different schemes including penalty method, splitting, in¬‚u-

ence matrix and Morchoisne™s space-time pseudospectral scheme. Good discussion of

compatibility conditions on the initial condition.

Deville, M. O. and Mund, E. H.: 1990, Finite-element preconditioning for pseudospec-

tral solutions of elliptic problems, SIAM Journal of Scienti¬c and Statistical Computing

12, 311“342.

Deville, M. O. and Mund, E. H.: 1992, Fourier analysis of ¬nite element preconditioned

collocation schemes, SIAM Journal of Scienti¬c and Statistical Computing 13(2), 596“610.

Deville, M. O., Mund, E. H. and Van Kemenade, V.: 1994, Preconditioned Chebyshev col-

location methods and triangular ¬nite elements, in C. Bernardi and Y. Maday (eds),

BIBLIOGRAPHY 609

Analysis, Algorithms and Applications of Spectral and High Order Methods for Partial Dif-

ferential Equations, Selected Papers from the International Conference on Spectral and

High Order Methods (ICOSAHOM ™92), Le Corum, Montpellier, France, 22-26 June

1992, North-Holland, Amsterdam, pp. 193“200.

Devulder, C. and Marion, M.: 1992, A class of numerical algorithms for large time integra-

tion: the nonlinear Galerkin methods, SIAM Journal of Numerical Analysis 29(2), 462“

483. Many theorems.

+

Dickinson, B. A.: 1933, Energy levels of H2 molecular ion, J. Chem. Phys. 1, 317. Illustration

of the Rayleigh variational principle in quantum chemistry;.

Dimitropoulus, C. and Beris, A. N.: 1997, An ef¬cient and robust spectral solver for non-

separable elliptic equations, Journal of Computational Physics 133, 186“191. Biconju-

gate gradient outer iteration with a Concus-Golub inner iteration in which a separable

Helmholtz equation is solved at each iteration.

Dimitropoulus, C. and Beris, A. N.: 1998, Ef¬cient pseudospectral ¬‚ow simulations in mod-

erately complex geometries, Journal of Computational Physics 144(2), 517“549. Pseu-

doconformal orthogonal curvilinear coordinates in two dimensions, Fourier in one

coordinate and Chebyshev in the other.

Don, W. S. and Gottlieb, D.: 1990, Spectral simulation of unsteady ¬‚ow past a cylinder,

in C. Canuto and A. Quarteroni (eds), Spectral and High Order Methods for Partial Dif-

ferential Equations: Proceedings of the ICOSAHOM ™89 Conference in Como, Italy, North-

Holland/Elsevier, Amsterdam, pp. 39“58. Also in Comput. Meths. Appl. Mech. En-

grg., vol. 80, with the same page numbers.

Don, W. S. and Gottlieb, D.: 1994, The Chebyshev-Legendre method: implementing Legen-

dre methods on Chebyshev points, SIAM Journal of Numerical Analysis 31, 1519“1534.

Don, W. S. and Solomonoff, A.: 1995, Accuracy and speed in computing the Chebyshev

collocation derivative, SIAM J. Sci. Comput. 16, 1253“1268.

Don, W. S. and Solomonoff, A.: 1997, Accuracy enhancement for higher derivatives using

Chebyshev collocation and a mapping technique, SIAM Journal of Scienti¬c Computing

18(4), 1040“1055. The Kosloff/Tal-Ezer mapping is used to reduce roundoff error and

allow a larger timestep.

Dongarra, J. J., Straughan, B. and Walker, D. W.: 1996, Chebyshev tau-QZ algorithm meth-

ods for calculating spectra of hydrodynamic stability problems, Applied Numerical

Mathematics 22, 399“434.

Doron, E., Hollingsworth, A., Hoskins, B. J. and Simmons, A. J.: 1974, A comparison of

grid-point and spectral methods in a meteorological problem, Quarterly Journal of the

Royal Meteorological Society 100, 371“383.

Douglas, J. and Russell, T. F.: 1982, Numerical methods for convection-dominated diffu-

sion problems based on combining the method of characteristics with ¬nite element

or ¬nite difference procedures, SIAM Journal of Numerical Analysis 19, 871“885. Not

spectral; invention of a semi-Lagrangian scheme.

Drake, J., Foster, I., Michalakes, J., Toonen, B. and Worley, P.: 1995, Design and performance

of a scalable parallel community climate model, Parallel Comput. 21(10), 1571“1591.

Parallel version, PCCM2, of the CCM2 spherical harmonics/vertical ¬nite difference

climate model. Performance on the IBM SP2 and Intel Paragon.

BIBLIOGRAPHY

610

Driscoll, J., Healy, Jr., D. M. and Rockmore, D.: 1997, Fast discrete polynomial transform

with applications to data analysis on distance transitive graphs, SIAM J. Comput.

26, 1066“1099. O(N log2 (N )) transform which works for any set of orthogonal poly-

nomials; more ef¬cient than Orszag(1986).

Driscoll, T. A. and Fornberg, B.: 1998, A block pseudospectral method for Maxwell™s equa-

tions. I. One-dimensional case, Journal of Computational Physics 140(1), 47“65. Employ

a domain decomposition scheme in which ¬ctitious points beyond the domain walls

are used, in a sort of grid overlapping scheme, to allow a much more uniform separa-

tion between grid points than in a standard pseudospectral algorithm. This allows a

relatively long time step at the cost of much increased domain-to-domain communi-

cation compared to the standard domain decomposition method. They generalize the

scheme so that it works well even when there are discontinuous changes in material

properties at domain walls.

Dubois, T., Jauberteau, F. and T´ mam, R.: 1990, The nonlinear Galerkin method for the two

e

and three dimensional Navier-Stokes equations, in K. W. Morton (ed.), Proceedings of

the Twelfth International Conference on Numerical Methods in Fluid Dynamics, Springer-

Verlag, New York, pp. 117“120.

Dubois, T., Jauberteau, F. and T´ mam, R.: 1998, Incremental unknowns, multilevel meth-

e

ods and the numerical simulation of turbulence, Comput. Meth. Appl. M. 159, 123“189.

Durran, D. R.: 1991, The third-order Adams-Bashforth method: an attractive alternative to

leapfrog time-differencing, Monthly Weather Review 119, 702“720.

Dutt, A. and Rokhlin, V.: 1993, Fast Fourier Transforms for nonequispaced data, SIAM J

Comput. 14, 1368“1393.

Dutt, A. and Rokhlin, V.: 1995, Fast Fourier Transforms for nonequispaced data, II, Applied

and Computational Harmonic Analysis 2, 85“110.

D™yakonov, E. G.: 1961, An iteration method for solving systems of ¬nite difference equa-

tions, Doklady Akademiia Nauk SSSR 138, 522“525. Not spectral; iteration precondi-

tioned by separable PDE.

Dym, H. and McKean, H. P.: 1972, Fourier Series and Integrals, Academic Press, New York.

129 pp.

Eggert, N., Jarratt, M. and Lund, J.: 1987, Sinc function computation of Sturm-Liouville

problems, Journal of Computational Physics 69, 209“229.

Ehrenstein, U. and Peyret, R.: 1989, A Chebyshev collocation method for the Navier-Stokes

equations with application to double-diffusive convection, International Journal for Nu-

merical Methods in Fluids 9, 427“452. Semi-implicit time integration with in¬‚uence ma-

trix method.

Eisen, H. and Heinrichs, W.: 1992, A new method of stabilization for singular perturba-

tion problems with spectral methods, SIAM Journal of Numerical Analysis 29, 107“122.

Shows that basis functions which vanish at boundaries are much better conditioned

than the Chebyshev polynomials from which these basis functions are formed.

Eisen, H., Heinrichs, W. and Witch, K.: 1991, Spectral collocation methods and polar coor-

dinate singularities, Journal of Computational Physics 96, 241“257.

BIBLIOGRAPHY 611

Eisenstat, S. C., Elman, H. C. and Schultz, M. H.: 1983, Variational iterative methods for

nonsymmetric systems of linear equations, SIAM J. Numer. Anal. 20, 345“357.

El-Daou, M. K. and Ortiz, E. L.: 1993, Error analysis of the tau method: dependence of

the error on the degree and on the length of the interval of approximation, Computers

Math. Applic. 25(7), 33“45.

El-Daou, M. K. and Ortiz, E. L.: 1994a, A recursive formulation of collocation in terms of

canonical polynomials, Computing 52, 177“202.

El-Daou, M. K. and Ortiz, E. L.: 1994b, The weighting subspaces of collocation and the Tau

method, in J. D. Brown, M. T. Chu, D. C. Ellison and R. J. Plemmons (eds), Proceedings

of the Cornelius Lanczos International Centenary Conference, Society for Industrial and

Applied Mathematics, Society for Industrial and Applied Mathematics, Philadelphia,

PA.

El-Daou, M. K. and Ortiz, E. L.: 1997, The uniform convergence of the Tau method for

singularly perturbed problems, Applied Mathematics Letters 10(2), 91“94. Existence and

stability of the algorithm is proved, independent of the perturbation parameter .

El-Daou, M. K., Ortiz, E. L. and Samara, H.: 1993, A uni¬ed approach to the tau method

and Chebyshev series expansion techniques, Computers Math. Applic. 25(3), 73“82.

Eliassen, E. and Machenhauer, B.: 1974, On spectral representation of the vertical vari-

ation of the meteorological ¬elds in numerical integration of a primitive equation

model, GARP WGNE Report 7, World Meteorological Organization, Geneva, Switzer-

land. Legendre polynomials in the vertical.

Elliott, D. and Stenger, F.: 1984, Sinc method of solution of singular integral equations, in

A. Gerasoulis and R. Vichnevetsky (eds), Numerical Solution of Singular Integral Equa-

tions, IMACS.

Ellsaesser, H. W.: 1966, Evaluation of spectral versus grid point methods of hemispheric

numerical weather prediction, J. Appl. Meteor. 5, 246“262. Fig. 12 is a good illustra-

tion of late onset of spectral blocking due to violation of the CFL criterion after the

advecting ¬‚ow has intensi¬ed from its initial maximum.

Engelmann, F., Feix, M., Minardi, E. and Oxenius, J.: 1963, Nonlinear effects from vlasov™s

equation, The Physics of Fluids 6(2), 266“275. Low order Hermite series (N = 2, 3) for

velocity coordinate; such low truncations are found to suppress instabilities that occur

in some parameter regions for the full equations.

Erlebacher, G., Zang, T. A. and Hussaini, M. Y.: 1987, Spectral multigrid methods for the

numerical simulation of turbulence, in S. McCormick and K. Stuben (eds), Multigrid

Methods, Marcel Dekker, New York, pp. 177“194.

Errico, R. M.: 1984, The dynamic balance of a general circulation model, Monthly Weather

Review 112, 2439“2454. Not spectral, but evaluation of the usefulness of slow manifold

concept in a complicated model.

Errico, R. M.: 1989, The degree of Machenauer balance in a climate model, Monthly Weather

Review 112, 2723“2733. Test of slow manifold ideas of Machenauer™s NG(1) approxi-

mation in a global hydrodynamics-with-physics model.

Falqu´ s, A. and Iranzo, V.: 1992, Edge waves on a longshore shear ¬‚ow, Physics of Fluids

e

pp. 2169“2190. Rational Chebyshev and Laguerre on semi-in¬nite domain.

BIBLIOGRAPHY

612

Finlayson, B. A.: 1973, The Method of Weighted Residuals and Variational Principles, Academic,

New York. 412 pp. Many good examples of low order pseudospectral methods,

dubbed “orthogonal collocation” here, and mostly drawn from chemical engineer-

ing and ¬‚uid dynamics. Mostly Legendre and Gegenbauer polynomials rather than

Chebyshev and no mention of the FFT.

Fischer, P. F.: 1990, Analysis and application of a parallel spectral element method for the

solution of the Navier-Stokes equations, Computer Methods in Applied Mechanics and

Engineering 80(1“3), 483“491.

Fischer, P. F.: 1994a, Domain decomposition methods for large scale parallel Navier-Stokes

calculations, in A. Quarteroni (ed.), Proceedings of the Sixth International Conference on

Domain Decomposition Methods for Partial Differential Equations, Como, Italy, AMS, Prov-

idence.

Fischer, P. F.: 1994b, Parallel domain decomposition for incompressible ¬‚uid dynamics,

Contemp. Math. 157, 313.

Fischer, P. F.: 1997, An overlapping Schwarz method for spectral element solution of the

incompressible Navier-Stokes equations, J. Comput. Phys. 133, 84“101.

Fischer, P. F.: 1998, Projection techniques for iterative solution of ax=b with successive

right-hand sides, Comput. Meth. Appl. M. 163(1“4), 193“204. Not spectral, but useful

for semi-implicit time marching.

Fischer, P. F. and Gottlieb, D.: 1997, On the optimal number of subdomains for hyperbolic

problems on parallel computers, International Journal of Supercomputing and Appl. High

Performance Computing 11, 65“76. Spectral elements.

Fischer, P. F. and Patera, A. T.: 1989, Parallel spectral element methods for the incompress-

ible Navier-Stokes equations, in J. H. Kane and A. D. Carlson (eds), Solution of Super

Large Problems in Computational Mechanics, Plenum, New York.

Fischer, P. F. and Patera, A. T.: 1991, Parallel spectral element solution of the Stokes prob-

lem, Journal of Computational Physics 92(2), 380“421.

Fischer, P. F. and Patera, A. T.: 1992, Parallel spectral element solutions of eddy-promoter

channel ¬‚ow, Proceedings of the European Research Community on Flow Turbulence and

Combustion Workshop, Laussane, Switzerland, Cambridge University Press, Cambridge.

Fischer, P. F. and Patera, A. T.: 1994, Parallel simulation of viscous incompressible ¬‚ows,

Annual Reviews of Fluid Mechanics 26, 483“527. REVIEW.

Fischer, P. F. and Rønquist, E. M.: 1994, Spectral element methods for large scale parallel

Navier-Stokes calculations, in C. Bernardi and Y. Maday (eds), Analysis, Algorithms

and Applications of Spectral and High Order Methods for Partial Differential Equations, Se-

lected Papers from the International Conference on Spectral and High Order Methods

(ICOSAHOM ™92), Le Corum, Montpellier, France, 22-26 June 1992, North-Holland,

Amsterdam, pp. 69“76. Also in Comput. Methods. Appl. Mech. Engrg., vol. 116.

Fischer, P. F., Ho, L.-W., Karniadakis, G. E., Rønquist, E. M. and Patera, A. T.: 1988a, Recent

advances in parallel spectral element simulation of unsteady incompressible ¬‚ows,

Computers and Structures 30, 217“231.

BIBLIOGRAPHY 613

Fischer, P. F., Rønquist, E. M. and Patera, A. T.: 1989, Parallel spectral element methods

for viscous ¬‚ow, in G. Carey (ed.), Parallel Supercomputing: Methods, Algorithms and

Applications, Wiley, New York, pp. 223“238.

Fischer, P., Rønquist, E. M., Dewey, D. and Patera, A. T.: 1988b, Spectral element methods:

Algorithms and architectures, in R. Glowinski, G. Golub, G. Meurant and J. Periaux

(eds), Proceedings of the First International Conference on Domain Decomposition Methods

for Partial Differential Equations, SIAM, SIAM, Philadelphia, pp. 173“197.

Fjørtoft, R.: 1952, On a numerical method of integrating the barotropic vorticity equation,

Tellus 4, 179“194. Not spectral; early use of Lagrangian coordinates in numerical me-