<<

. 130
( 136 .)



>>

plication of Fourier basis; methods described in Sanders, Katopodes and Boyd (1998).

Keller, H. B.: 1977, Numerical solution of bifurcation and nonlinear eigenvalue problems,
in P. Rabinowitz (ed.), Applications of Bifurcation Theory, Academic Press, New York,
pp. 359“384.

Keller, H. B.: 1992, Numerical Methods for Two-Point Boundary-Value Problems, Dover, New
York. Reprints of good research papers on solving nonlinear algebraic equations as
well as differential equations.

Kermode, M., McKerrell, A. and Delves, L. M.: 1985, The calculation of singular coef¬-
cients, Computer Methods in Applied Mechanics and Engineering 50, 205“215. Corner
singularities, global elements.

Khabibrakhmanov, I. K. and Summers, D.: 1998, The use of generalized Laguerre poly-
nomials in spectral methods for nonlinear differential equations, Comput. Math. Appl.
36(2), 65“70. Galerkin method, implemented by recurrence, and illustrated by the
Blasius equation on the semi-in¬nite domain.

Khajah, H. G. and Ortiz, E. L.: 1992, Numerical approximation of solutions of functional
equations using the Tau method, Applied Numerical Mathematics 9, 461“474.

Khajah, H. G. and Ortiz, E. L.: 1993, Rational approximations: a tau method approach,
in T. M. Rassias, H. M. Srivastava and A. Yanushauskas (eds), Topics in polynomials of
one and several variables and their applications, Volume dedicated to the memory of P. L.
Chebyshev, World Scienti¬c, Singapore, pp. 323“333.

Khorrami, M. R. and Malik, M. R.: 1993, Ef¬cient computation of spatial eigenvalues for hy-
drodynamic stability analysis, Journal of Computational Physics 104(1), 267“272. Show
that by neglecting terms quadratic in the eigenvalue, one can halve the size of the
matrix given the QZ algorithm, and then safely re¬ne the eigenvalues by iterative
correction with the quadratic term reinserted.

Kida, S.: 1985, Three-dimensional periodic ¬‚ows with high-symmetry, Journal of the Physical
Society of Japan 54, 2132“2136. Three-dimensional Fourier basis, greatly reduced by
symmetry.

Kida, S. and Orszag, S. A.: 1990, Energy and spectral dynamics in forced compressible
turbulence, Journal of Scienti¬c Computing 5(2), 85“126. Fourier 643 with Runge-Kutta-
Gill timestepping.
BIBLIOGRAPHY 633

Kikuchi, N.: 1986, Finite Element Methods in Mechanics, Cambridge University Press, Cam-
bridge. Very readable, elementary introduction to ¬nite elements and skyline matrix
solvers.

Klimas, A. J.: 1987, A method for overcoming the velocity space ¬lamentation problem
in collisionless plasma model solutions, Journal of Computational Physics 68, 202“226.
Fourier-Galerkin for both velocity and space coordinates; introduces a ¬lter which
is quite effective in controlling the dissipation of small-scale structure in the velocity
coordinate.

Klimas, A. J. and Farrell, W. M.: 1994, A splitting algorithm for Vlasov simulation with
¬lamentation ¬ltration, Journal of Computational Physics 110, 150“163. Fourier-Galerkin
for both velocity coordinate and space coordinate; shows a particular ¬lter greatly
improves convergence and reduces ¬lamentation in the velocity.

Kopriva, D. A.: 1986, A spectral multidomain method for the solution of hyperbolic sys-
tems, Applied Numerical Mathematics 2, 221“241.

Kopriva, D. A.: 1987, A practical assessment of spectral accuracy for hyperbolic problems
with discontinuity, Journal of Scienti¬c Computing 2, 249“262.

Kopriva, D. A.: 1988, A multidomain spectral collocation computation of the sound gen-
erated by a shock-vortex interaction, in M. Schultz, D. Lee and R. Sternberg (eds),
Computational Acoustics and Wave Propagation, North-Holland, Amsterdam.

Kopriva, D. A.: 1989a, Computation of hyperbolic equations on complicated domains with
patched and overset Chebyshev grids, SIAM Journal of Scienti¬c and Statistical Comput-
ing 10, 120“132.

Kopriva, D. A.: 1989b, Domain decomposition with both spectral and ¬nite difference
methods for the accurate computation of ¬‚ows with shocks, Applied Numerical Mathe-
matics 6, 141“151.

Kopriva, D. A.: 1991, Multidomain spectral solution of the Euler gas dynamics equations,
Journal of Computational Physics 96, 428“450.

Kopriva, D. A.: 1992, Spectral solution of inviscid supersonic ¬‚ows over wedges and ax-
isymmetric cones, Computers and Fluids 21, 247“266.

Kopriva, D. A.: 1993a, Spectral solution of the viscous blunt-body problem, AIAA Journal
31, 1235“1242.

Kopriva, D. A.: 1993b, Spectral solutions of high-speed ¬‚ows over blunt cones, AIAA Jour-
nal 31, 2227“2231.

Kopriva, D. A.: 1993c, Multidomain spectral solution of compressible viscous ¬‚ows, AIAA
Journal 31, 3376“3384.

Kopriva, D. A.: 1994, Multidomain spectral solution of compressible viscous ¬‚ows, Journal
of Computational Physics 115(1), 184“199.

Kopriva, D. A.: 1996a, Spectral solution of the viscous blunt body problem. II. Multidomain
approximation, AIAA Journal 34(3), 560“564.
BIBLIOGRAPHY
634

Kopriva, D. A.: 1996b, A conservative, staggered-grid multidomain method for the Eu-
ler gas-dynamics equations, in A. V. Ilin and L. R. Scott (eds), Proceedings of the Third
International Conference on Spectral and High Order Methods, Houston Journal of Math-
ematics, Houston, Texas, pp. 457“468.

Kopriva, D. A.: 1998, A staggered-grid multidomain spectral method for the compressible
Navier-Stokes equations, Journal of Computational Physics 143(1), 125“158. Noncon-
forming interfaces; complex geometry.

Kopriva, D. A. and Hussaini, M. Y.: 1989, Multidomain spectral solution of shock-
turbulence interactions, in T. F. Chan, R. Glowinski, J. Periaux and O. B. Widlund
(eds), Domain Decomposition Methods, SIAM, Philadelphia, pp. 340“350.

Kopriva, D. A. and Kolias, J. H.: 1996, A conservative staggered-grid Chebyshev multido-
main method for compressible ¬‚ows, Journal of Computational Physics 125, 244“261.

Kopriva, D. A. and Panchang, V. G.: 1989, Pseudospectral solution of two-dimensional
water-wave propagation, Mathematical and Computer Modelling 12, 625“640.

Kopriva, D. A., Zang, T. A. and Hussaini, M. Y.: 1991, Spectral methods for the Euler
equations: The blunt body revisited, AIAA Journal 29(9), 1458“1462.

Kopriva, D. A., Zang, T. A., Salas, M. D. and Hussaini, M. Y.: 1984, Pseudospectral solution
of two-dimensional gas-dynamics problems, in M. Pandol¬ and R. Piva (eds), Proceed-
ings 5th GAMM Conf. Numerical Methods on Fluid Mechanics, Vieweg, Braunschweig,
pp. 185“192.

Korczak, K. Z. and Patera, A. T.: 1986, An isoparametric spectral element method for so-
lution of the Navier-Stokes equations in complex geometry, Journal of Computational
Physics 62, 361“382.

Kosloff, D., Reshef, M. and Loewenthal, D.: 1984, Elastic wave calculations by the Fourier
method, Bulletin of the Seismological Society of America 74, 875“891.

Kosloff, R. and Tal-Ezer, H.: 1993, A modi¬ed Chebyshev pseudospectral method with an
O(1/N ) time step restriction, Journal of Computational Physics 104, 457“469. The key
idea is to employ a mapping which almost converts the Chebyshev polynomials back
into cosines. The interpolahon grid is not uniform, but the roots of the mapped poly-
nomials are not as concentrated near the endpoints as those of the Chebyshev polyno-
mials. When the stretching parameter is chosen so as to give an O(1/N ) timstep, the
asymptotic rate of convergence is reduced from geometric to algebraic, however.

¨
Koures, V. G.: 1996, Solving the Coulomb Shrodinger equation in d = 2 + 1 via sinc collo-
cation, Journal of Computational Physics 128(1), 1“5.

Kreiss, H.-O.: 1991, Problems with different time scales, Acta Numerica 1, 101“139. Numer-
ical algorithms for problems with a “slow manifold”.

Krishnamurti, T. N.: 1962, Numerical integration of primitive equations by a quasi-
Lagrangian advection scheme, Journal of Applied Meteorology 1, 508“521. Not spectral;
early paper on semi-Lagrangian methods.

Kuo, H.-C. and Williams, R. T.: 1990, Semi-Lagrangian solutions to the inviscid Burgers
equation, Monthly Weather Review 118, 1278“1288. Elementary, but good introduction
to semi-Lagrangian schemes.
BIBLIOGRAPHY 635

Lacour, C. and Maday, Y.: 1997, Two different approaches for matching nonconforming
grids: The mortar element method and the FETI method, BIT 37(3), 720“738.

Lambiotte, J., Bokhari, S., Hussaini, M. Y. and Orszag, S. A.: 1982, Navier-Stokes solu-
tions on the Cyber-203 by a pseudospectral technique, 10th IMACS World Congress
on System Simulation and Scienti¬c Computation, Montreal. Splitting with mixed ¬nite
difference/spectral spatial discretization.

Lanczos, C.: 1938, Trigonometric interpolation of empirical and analytical functions, Jour-
nal of Mathematics and Physics 17, 123“199. The origin of both the pseudospectral
method and the tau method. Lanczos is to spectral methods what Newton was to
calculus.

Lanczos, C.: 1956, Applied Analysis, Prentice-Hall, Englewood Cliffs, New Jersey. 400 pp.

Lanczos, C.: 1966, Discourse on Fourier Series, Oliver and Boyd, Edinburgh.

Lanczos, C.: 1973, Legendre versus Chebyshev polynomials, in J. C. P. Miller (ed.), Numer-
ical Analysis, Academic Press, New York, pp. 191“201. Shows Legendre is “supercon-
vergent” and much better than Chebyshev at x = ±1.

Lander, J. and Hoskins, B. J.: 1997, Believable scales and parameterizations in a spectral
transform model, Mon. Weath. Rev. 125, 292“303.

Laprise, R.: 1992, The resolution of global spectral methods, Bulletin of the American Meteo-
rological Society 73, 1453“1454.

Launay, J., Bouchet, S., Randriamampianina, A., Bontoux, P. and Gibart, P.: 1994, Modeling
and experiments on epitaxial growth on a GaAs hemisphere substrate at 1 g and under
hypergravity, in L. L. Regel and W. R. Wilcox (eds), Materials Processing in High Gravity,
Plenum Press, New York, pp. 139“160. Two-dimensional (r, z) crystal in cylindrical
coordinates using a Chebyshev tau method with the Haidvogel-Zang diagonalization
method and time integration by the software package LSODA.

Le Qu´ r´ , P. and P´ cheux, J.: 1989, Multiple transitions in axisymmetric annulus convec-
ee e
tion, Journal of Fluid Mechanics 206, 517“544. Chebyshev-tau spectral method.

Le Qu´ r´ , P. and P´ cheux, J.: 1990, A three-dimensional pseudo-spectral algorithm for the
ee e
computation of convection in a rotating annulus, Computer Methods in Applied Mechan-
ics and Engineering 80, 261“271.

Lee, N. Y., Schultz, W. W. and Boyd, J. P.: 1989, Stability of ¬‚uid in a rectangular enclosure
by spectral method, International Journal of Heat and Mass Transfer 32, 513“520.

Leith, C. E.: 1980, Nonlinear normal mode initialization and quasi-geostrophic theory, Jour-
nal of the Atmospheric Sciences 37, 958“968.

Leovy, C. B.: 1964, Simple models of thermally driven mesospheric circulations, Journal of
the Atmospheric Sciences 21, 327“341. Spectral eigensolution of Laplace™s Tidal equa-
tion.

Leslie, L. M. and Purser, R. J.: 1991, High order numerics in an unstaggered three-
dimensional time-split semi-Lagrangian forecast model, Monthly Weather Review
119, 1612“1623. Not spectral, but very high order spatial differences.
BIBLIOGRAPHY
636

Levin, J. G., Iskandarani, M. and Haidvogel, D. B.: 1997, A spectral ¬ltering procedure
for eddy-resolving simulations with a spectral element ocean model, J. Comput. Phys.
137(1), 130“154.

Lewis, D. L., Lund, J. and Bowers, K. L.: 1987, The space-time sinc-Galerkin method for
parabolic problems, International Journal for Numerical Methods in Engineering 24, 1629“
1644. Sinc basis in both space and time.

Lewis, H. R. and Bellan, P. M.: 1990, Physical constraints on the coef¬cients of Fourier ex-
pansions in cylindrical coordinates, Journal of Mathematical Physics 31, 2592“. Analysis
of the symmetry conditions across r = 0 for both scalars and vectors.

Li, C. W. and Qin, M. Z.: 1988, A symplectic difference scheme for the in¬nite dimensional
Hamiltonian system, Journal of Computer and Applied Mathematics 6, 164“174.

Li, T.-Y.: 1987, Solving polynomial systems, Math. Intelligencer 9, 33“39. Probability-one
homotopy.

Lie, I.: 1993, Using implicit ODE methods with iterative linear equation solvers in spectral
methods, SIAM Journal of Scienti¬c Computing 14, 1194“1213.

Liffman, K.: 1996, Comments on a collocation spectral solver for the Helmholtz equation,
Journal of Computational Physics 128(1), 254“258. Extends the linear, elliptic boundary
value solver of Ehrenstein and Peyret(1986), which uses Chebyshev polynomials, to
inhomogeneous Robin boundary conditions.

Lin, S.-H. and Pierrehumbert, R. T.: 1988, Does Ekman friction suppress baroclinic insta-
bility?, Journal of the Atmospheric Sciences 45, 2920“2933. Solves a two-dimensional
eigenvalue problem on the half-space ([’∞, ∞] — [0, ∞]) via a tensor product basis of
rational Chebyshev functions, T Bm (y) T Ln (z).

Lindberg, C. and Broccoli, A. J.: 1996, Representation of topography in spectral climate
models and its effect on simulated precipitation, J. Climate 9, 2641“. Smoothing of
spherical harmonic series for topography through non-uniform spherical spline.

Lindzen, R. S.: 1970, Internal equatorial planetary-scale waves in shear ¬‚ow, Journal of the
Atmospheric Sciences 27, 394“407. Mixed elliptic-hyperbolic PDE.

Liu, K. M. and Ortiz, E. L.: 1982, Eigenvalue problems for singularly perturbed differential
equations, in J. J. H. Miller (ed.), Computational Methods for Boundary and Interior Layers,
Vol. II, Boole Press, Dublin, pp. 324“329.

Liu, K. M. and Ortiz, E. L.: 1986, Numerical solution of eigenvalue problems for partial
differential equations with tau-lines method, Computer Mathematics and Applications
12B, 1153“1168.

Liu, K. M. and Ortiz, E. L.: 1987a, Tau method approximate solution of high-order differ-
ential eigenvalue problems de¬ned in the complex plane with an application of the
Orr-Sommerfeld stability equation, Comm. Appl. Numer. Meths. 3, 187“194.

Liu, K. M. and Ortiz, E. L.: 1987b, Tau method approximation of differential eigenvalue
problems where the spectral parameter enters nonlinearly, Journal of Computational
Physics 72(2), 299“310.

Liu, K. M. and Ortiz, E. L.: 1989, Numerical solution of ordinary and partial functional-

<<

. 130
( 136 .)



>>