<<

. 131
( 136 .)



>>

differential eigenvalue problems with the tau method, Computing 41, 205“217.
BIBLIOGRAPHY 637

Liu, K. M., Ortiz, E. L. and Pun, K.-S.: 1984, Numerical solution of Steklov™s partial differ-
ential equation eigenvalue problem, in J. J. H. Miller (ed.), Computational Methods for
Boundarv and Interior Layers, Vol. II, Boole Press, Dublin, pp. 244“249.

Liu, Y., Liu, L. and Tang, T.: 1994, The numerical computation of connecting orbits in
dynamical systems: A rational spectral approach, Journal of Computational Physics
111, 373“380. T Bn basis for computing heteroclinic and homoclinic solutions (i. e.,
shock-like and soliton-like) solutions to nonlinear boundary value problems on an
in¬nite interval.

Lomtev, I., Quillen, C. B. and Karniadakis, G. E.: 1998, Spectral/hp methods for viscous
compressible ¬‚ows on unstructured 2D meshes, J. Comput. Phys. 144(2), 325“357. Spec-
tral elements on triangles using a discontinuous Galerkin formulation.

Longuet-Higgins, M. S.: 1968, The eigenfunctions of Laplace™s tidal equation over a sphere,
Phil. Trans. Royal Society of London, Series A 262, 511“607. Spherical harmonics; tridiag-
onal Galerkin matrices.

Lopez, J. M. and Shen, J.: 1998, An ef¬cient spectral-projection method for the Navier-
Stokes equations in cylindrical coordinates, Journal of Computational Physics 139, 308“
326.

Lorenz, E. N. and Krishnamurthy, V.: 1987, On the nonexistence of a slow manifold, Journal
of the Atmospheric Sciences 44, 2940“2950. Weakly non-local in time; nothing on spectral
methods except that the ¬ve-mode system is derived by a Galerkin method.

Lund, J.: 1986, Symmetrization of the sinc-Galerkin method for boundary value problems,
Mathematics of Computation 47, 571“588.

Lund, J. and Bowers, K. L.: 1992, Sinc Methods For Quadrature and Differential Equations,
Society for Industrial and Applied Mathematics, Philadelphia. 304 pp. Restricted to
sinc functions only.

Lund, J. and Vogel, C. R.: 1990, A fully-Galerkin method for the numerical solution of an
inverse problem in a parabolic partial differential equation, Inverse Problems 6, 205“
217. Sinc basis.

Lund, J., Bowers, K. L. and Carlson, T. S.: 1991, Fully sinc-Galerkin computation for
boundary feedback stabilization, Journal of Mathematical Systems, Estimation and Con-
trol 1, 165“182.

Lund, J., Bowers, K. L. and McArthur, K. M.: 1989, Symmetrization of the sinc-Galerkin
method with block techniques for elliptic equations, IMA Journal of Numerical Analysis
9, 29“46.

Lund, J. R. and Riley, B. B.: 1984, A sinc-collocation method for the computation of the
eigenvalues of the radial Schroedinger equation, IMA Journal of Numerical Analysis
4, 83“98.

Lundin, L.: 1980, A cardinal function method of solution of the equation ∆u = u ’ u3 ,
Mathematics of Computation 35, 747“756. Sinc (Whittaker cardinal) basis.

Lynch, P.: 1992, Richardson™s barotropic forecast: A reappraisal, Bulletin of the American
Meteorological Society 73(1), 35“47.
BIBLIOGRAPHY
638

Lynch, P. and Huang, X.: 1992, Initialization of the HIRLAM model using a digital ¬lter,
Monthly Weather Review 120, 1019“1034. Not spectral; slow manifold initialization
scheme.
Ma, H.: 1992, The equatorial basin response to a Rossby wave packet: The effects of nonlin-
ear mechanism, Journal of Marine Research 50, 567“609. Spectral element ocean model.
Ma, H.: 1993a, Trapped internal gravity waves in a geostrophic boundary current, Journal
of Fluid Mechanics 247, 205“229. Spectral element ocean model.
Ma, H.: 1993b, A spectral element basin model for the shallow water equations, Journal of
Computational Physics 109, 133“149. Spectral element ocean model.
Ma, H.: 1995, Parallel computation with the spectral element method, in A. Ecer, J. Periaux,
N. Satofuka and S. Taylor (eds), Parallel Computational Fluid Dynamics: Implementations
and Results Using Parallel Computers, Elsevier, Amsterdam, pp. 239“246.
Ma, H.: 1996a, Baroclinic wave motions in an equatorial ocean current and related temper-
ature ¬‚uctuations, J. Marine Res. 54(6), 1073“1096. Spectral elements.
Ma, H.: 1996b, The dynamics of North Brazil Current retro¬‚ection eddies, Journal of Marine
Research 54, 35“53. Spectral elements.
Ma, H.-P. and Guo, B.-Y.: 1986, The Fourier pseudo-spectral method with a restrain opera-
tor for the Korteweg-de Vries equation, Journal of Computational Physics 65, 120“137.
Ma, H.-P. and Guo, B.-Y.: 1987, The Fourier pseudo-spectral method for solving two-
dimensional vorticity equations, IMA Journal of Numerical Analysis 5, 47“60.
Machenhauer, B.: 1977, On the dynamics of gravity oscillations in a shallow water model,
with application to normal mode initialization, Beitr. Phys. Atmos. 50, 253“271.
Machenhauer, B. and Daley, R.: 1972, A baroclinic primitive equation model with a spec-
tral representation in three dimensions, Report 4, Institut for Teoretisch Meteorologi,
Copenhagen University, Copenhagen, Denmark. 66 pp. Legendre series in the verti-
cal, spherical harmonics in latitude and longitude.
Machenhauer, B. and Daley, R.: 1974, Hemispheric spectral model, number 14 in GARP
Publication Series, World Meteorological Organization, Geneva, Switzerland, pp. 226“
251. Weather forecasting model with Legendre polynomials in height and spherical
harmonics in latitude and longitude.
Maday, Y. and Patera, A. T.: 1987, Spectral element methods for the incompressible Navier
Stokes equations, in A. K. Noor and J. T. Oden (eds), State of the Art Surveys on Compu-
tational Mechanics, ASME, New York, pp. 71“143.
Maday, Y. and Rønquist, E. M.: 1990, Optimal error analysis of spectral methods with
emphasis on non-constant coef¬cients and deformed geometries, in C. Canuto and
A. Quarteroni (eds), Spectral and High Order Methods for Partial Differential Equations:
Proceedings of the ICOSAHOM ™89 Conference in Como, Italy, North-Holland/Elsevier,
Amsterdam, pp. 91“115. Also in Comput. Meths. Appl. Mech. Engrg., vol. 80, with
the same page numbers.
Maday, Y., Mavriplis, C. A. and Patera, A. T.: 1989, Nonconforming mortar element
method: application to spectral discretizations, in T. F. Chan, R. Glowinski, J. Periaux
and O. B. Widlund (eds), Domain Decomposition Methods, SIAM, Society for Industrial
and Applied Mathematics SIAM, Philadelphia.
BIBLIOGRAPHY 639

Maday, Y., Meiron, D., Patera, A. T. and Rønquist, E. M.: 1993, Analysis of iterative meth-
ods for the steady and unsteady Stokes problem: Application to spectral element dis-
cretizations, SIAM Journal of Scienti¬c Computing 14, 310“337.

Maday, Y., Patera, A. T. and Rønquist, E. M.: 1990, An operator integration-factor splitting
method for time-dependent problems: Application to incompressible ¬‚uid ¬‚ow, Jour-
nal of Scienti¬c Computing 5, 263“292. Generalizes the usual two-level and three-level
schemes, which are of at most second order accuracy in time, to arbitrary order.

Maday, Y., Patera, A. T. and Rønquist, E. M.: 1992, The PN — PN ’2 method for the approx-
imation of the Stokes problem, Laboratoire d™Analyse Num´rique, Paris VI 11, 4.
e

Maday, Y., Pernaud-Thomas, B. and Vandeven, H.: 1985, Reappraisal of Laguerre type
spectral methods, Rech. Aerosp. 1985-6, 13“35.

Makar, P. A. and Karpik, S. R.: 1996, Basis-spline interpolation on the sphere: application
to semi-Lagrangian advection, Monthly Weather Review 124, 182. Comparisons with
spectral methods.

Malek, A. and Phillips, T. N.: 1995, Pseudospectral collocation methods for fourth-order
differential equations, IMA Journal of Numerical Analysis 15, 523“553.

Malik, M. R.: 1990, Numerical methods for hypersonic boundary layer stability, Journal
of Computational Physics 86(2), 376“413. Linear eigenvalue problems solved by single
domain and multi-domain Chebyshev methods and compact 4th order differences;
inverse Rayleigh iteration.

Malik, M. R. and Orszag, S. A.: 1987, Linear stability analysis of three-dimensional com-
pressible boundary layers, Journal of Scienti¬c Computing 2, 77“98.

Mamun, C. K. and Tuckerman, L. S.: 1995, Asymmetry and Hopf bifurcation in spherical
Couette ¬‚ow, Physics of Fluids 7(1), 80“91. Axisymmetric incompressible ¬‚ow between
two spheres using vorticity/streamfunction and in¬‚uence matrix method. Good dis-
cussion of how, by modifying only twenty lines in the time-dependent code, steady
states could be computed directly by a nonlinear Richardson™s iteration with precon-
ditioning by Stokes ¬‚ow (that is, by inverting the operator which is treated implicitly
in the semi-implicit time-marching algorithm).

Mansell, G., Merry¬eld, W., Shizgal, B. and Weinert, U.: 1993, A comparison of differential
quadrature methods for the solution of partial differential equations, Computer Meth-
ods in Applied Mechanics and Engineering 104, 295“316. Differential quadrature is the
same or almost the same as the pseudospectral method.

Marchuk, G. I.: 1974, Numerical Methods in Numerical Weather Prediction, Academic Press,
New York. 277 pp. Splitting and fractional steps time integration.

Marcus, P. A.: 1984a, Simulation of Taylor-Couette ¬‚ow, Part 1. Numerical methods and
comparison with experiment, Journal of Fluid Mechanics 146, 45“64. Fourier-Fourier-
Chebyshev computations of ¬‚ow in an annulus in cylindrical coordinates, assumed
periodic in z as well as θ. “Shift-and-re¬‚ect” symmetry halves the number of Fourier
modes in the basis.

Marcus, P. A.: 1984b, Simulation of Taylor-Couette ¬‚ow, Part 2. Numerical results for wavy
vortex ¬‚ow with one travelling wave, Journal of Fluid Mechanics 146, 65“113.
BIBLIOGRAPHY
640

Marcus, P. A. and Tuckerman, L. S.: 1987a, Simulation of ¬‚ow between concentric rotat-
ing spheres. Part 1. Steady states, J. Fluid Mech. 185, 1“30. Axisymmetric ¬‚ows with
splitting errors removed by a Green™s function [in¬‚uence matrix] method.
Marcus, P. A. and Tuckerman, L. S.: 1987b, Simulation of ¬‚ow between concentric rotating
spheres. Part 2. Transitions, J. Fluid Mech. 185, 31“65.
Marcus, P. A., Orszag, S. A. and Patera, A. T.: 1983, Simulation of cylindrical Couette ¬‚ow,
in E. Krause (ed.), 8th International Conf. on Numerical Methods in Fluid Dynamics, num-
ber 170 in Lecture Notes in Physics, Springer-Verlag, New York, pp. 371“376.
Marcus, P. J.: 1990, Vortex dynamics in a shearing zonal ¬‚ow, Journal of Fluid Mechanics
215, 393“430. Fourier-Chebyshev algorithm for annular ¬‚ow from Marcus(1984a).
Dealiasing using Orszag Two-Thirds Rule because it helped here, contrary to the
experiments of Marcus(1984b). Compared hyperviscosity with ¬ltering of high or-
der modes, and preferred the latter because it was cheaper, not requiring additional
boundary conditions.
Margolin, L. G. and Jones, D. A.: 1992, An approximate inertial manifold for computing
Burgers™ equation, Physica D 60, 175“184.
Marion, M. and T´ mam, R.: 19, Nonlinear Galerkin methods, SIAM Journal of Numerical
e
Analysis 26, 1139“1157.
Marshall, H. G. and Boyd, J. P.: 1987, Solitons in a continuously strati¬ed equatorial ocean,
Journal of Physical Oceanography 17, 1016“1031. Hermite function application.
Mason, J. C.: 1967, Chebyshev polynomial approximations for the L-shaped membrane
eigenvalue problem, SIAM Journal of Applied Mathematics 15, 172“186. Maps the L-
shaped domain into a polygonal ¬gure and then solves the problem on the square
containing the polygon. This completely eliminates the corner singularities; his results
are superb.
Matsushima, T. and Marcus, P. S.: 1995, A spectral method for polar coordinates, Journal of
Computational Physics 120, 365“374. One-side Jacobi polynomials in radius.
Matsushima, T. and Marcus, P. S.: 1997, A spectral method for unbounded domains, Journal
of Computational Physics 137(2), 321“345. Polar coordinates with Fourier basis in angle
and a radial basis of rational functions which are the images of associated Legendre
functions under an algebraic mapping; applications to hydrodynamic vortices.
Mavriplis, C.: 1989, Laguerre polynomials for in¬nite-domain spectral elements, Journal of
Computational Physics 80(2), 480“.
Mavriplis, C.: 1994, Adaptive mesh strategies for the spectral element method, in
C. Bernardi and Y. Maday (eds), Analysis, Algorithms and Applications of Spectral and
High Order Methods for Partial Differential Equations, Selected Papers from the Interna-
tional Conference on Spectral and High Order Methods (ICOSAHOM ™92), Le Corum,
Montpellier, France, 22-26 June 1992, North-Holland, Amsterdam, pp. 77“86. Also in
Comput. Meths. Appl. Mech. Engr., vol. 116.
Mayer, E. W. and Powell, K. G.: 1992, Viscous and inviscid instabilities of a trailing vortex,
Journal of Fluid Mechanics 245, 91“114. Chebyshev polynomial/QR one-dimensional
eigenvalue problem in radius r in polar coordinates with domain truncation at large
but ¬nite r. Integration on a contour deformed into the complex plane is used to re-
solve nearly-neutral modes. The in¬nite domain is truncated to an annulus for some
runs to calculate “ring modes” which are concentrated at intermediate radius.
BIBLIOGRAPHY 641

McArthur, K. M., Bowers, K. L. and Lund, J.: 1987a, Numerical implementation of the sinc-
Galerkin method for second-order hyperbolic equations, Numerical Methods for Partial
Differential Equations 3, 169“185.

McArthur, K. M., Bowers, K. L. and Lund, J.: 1987b, The sinc method in multiple space
dimensions: Model problems, Numerische Mathematik 56, 789“816.

McCalpin, J. D.: 1988, A quantitative analysis of the dissipation inherent in Semi-
Lagrangian advection, Monthly Weather Review 116, 2330“2336. Not spectral, but good
analysis of the damping which is implicit in off-grid interpolation.

McCrory, R. L. and Orszag, S. A.: 1980, Spectral methods for multi-dimensional diffusion
problems, Journal of Computational Physics 37, 93“112.

McDonald, A.: 1984, Accuracy of multiply-upstream semi-Lagrangian advective schemes
I., Monthly Weather Review 112, 1267“1275. Not spectral.

McDonald, A.: 1986, A semi-Lagrangian and semi-implicit two-time-level integration
scheme, Monthly Weather Review 114, 824“830. Not spectral; only ¬rst order accurate
in time.

McDonald, A.: 1987, Accuracy of multiply-upstream semi-Lagrangian advection schemes
II, Monthly Weather Review 115, 1446“1450. Not spectral.

McDonald, A. and Bates, J. R.: 1987, Improving the estimate of the departure point position
in a two-time-level semi-Lagrangian and semi-implicit model, Monthly Weather Review
115, 737“739. Not spectral.

McDonald, A. and Bates, J. R.: 1989, Semi-Lagrangian integration of a gridpoint shallow-
water model on the sphere, Monthly Weather Review 117(1), 130“137. Not spectral.

McFadden, G. B., Murray, B. T. and Boisvert, R. F.: 1990, Elimination of spurious eigenval-
ues in the Chebyshev tau spectral method, Journal of Computational Physics 91, 228“239.

McGregor, J. L.: 1993, Economical determination of departure points for semi-Lagrangian
models, Monthly Weather Review 121, 221“230. Not spectral per se; shows his O(„ 2 )
formula D2 costs only 5 additions and 7 multiplications versus 30 and 60 for bicubic
interpolation (in two space dimensions).

McKerrell, A.: 1988, The global element applied to ¬‚uid ¬‚ow problems, Computers and
Fluids 16, 41“46. Corner singularities, domain decomposition algorithms, two-
dimensional mappings.

McKerrell, A. and Delves, L. M.: 1984, Solution of the global element equations on the
ICL DAP, ICL Technical Journal 4, 50“58. Massively parallel computation with spectral
domain decomposition.

McKerrell, A., Phillips, C. and Delves, L. M.: 1981, Chebyshev expansion methods for
the solution of elliptic partial differential equations, Journal of Computational Physics
40, 444“452.

McLaughlin, J. B. and Orszag, S. A.: 1982, Transition from periodic to chaotic thermal
convection, Journal of Fluid Mechanics 122, 123“142.

Mead, K. O. and Delves, L. M.: 1973, On the convergence rate of generalized Fourier ex-
pansions, Journal of the Institute for Mathematics and Its Applicaitons 12, 247“259.
BIBLIOGRAPHY
642

<<

. 131
( 136 .)



>>