namics. Part 1. Kelvin-Helmholtz instability, J. Fluid Mech. 114, 283“298. Singularities

estimated from the slopes of the Fourier coef¬cients versus degree at different times.

Meiron, D. I., Orszag, S. A. and Israeli, M.: 1981, Applications of numerical conformal

mapping, Journal of Computational Physics 40, 345“360.

Mercier, B.: 1989, An Introduction to the Numerical Analysis of Spectral Methods, Vol. 318 of

Lecture Notes in Physics, Springer-Verlag, New York. 200 pp. Author™s translation,

without updating, of an earlier monograph in French.

Mercier, B. and Raugel, G.: 1982, Resolution d™un probl` me aux limites dans un ouvert

e

´e

axisym´ trique par el´ ments ¬nis en r, z et s´ ries de Fourier en th´ ta, R. A. I. R. O.

e e e

Anal. Numer. 16, 67“100.

Merilees, P. E.: 1973a, An alternative scheme for the summation of a series of spherical har-

monics, J. Appl. Meteor. 12, 224“227. Instability of standard recurrence for the spherical

harmonics for large zonal wavenumber; ill-conditioning of “Robert” basis.

Merilees, P. E.: 1973b, The pseudospectral approximation applied to the shallow water

wave equations on a sphere, Atmosphere 11, 13“20.

Merilees, P. E.: 1974, Numerical experiments with the pseudospectral method in spherical

coordinates, Atmosphere 12, 77“96.

Merzbacher, E.: 1970, Quantum Mechanics, 2 edn, Wiley, New York. 400 pp. Hermite funcs.;

Galerkin meths. in quantum mechanics.

Metcalfe, R. W., Orszag, S. A., Brachet, M. E., Menon, S. and Riley, J.: 1987, Secondary

instability of a temporally growing mixing layer, Journal of Fluid Mechanics 184, 207“

243.

Mills, R. D.: 1987, Using a small algebraic manipulation system to solve differential and

integral equations by variational and approximation techniques, J. Symbolic Comp.

3, 291“301.

Minion, M. L. and Brown, D. L.: 1997, Performance of under-resolved two-dimensional

incompressible ¬‚ow simulations, II, J. Comput. Phys. 138(2), 734“765. Comparison of

several numerical methods including a pseudospectral method; generation of spuri-

ous vortices whose size is much larger than twice the grid spacing through instability,

excited by truncation error, of underresolved ¬‚ows.

Mittal, R. and Balachandar, S.: 1996, Direct numerical simulation of ¬‚ow past elliptic

cylinders, Journal of Computational Physics 124, 351“367. Chebyshev-Fourier time-

dependent calculations using a single computational domain in elliptic coordinates.

Good, careful discussion of both in¬‚ow and out¬‚ow boundary conditions, parabo-

lization of the out¬‚ow, smooth blending of out¬‚ow into in¬‚ow.

Mizzi, A., Tribbia, J. and Curry, J.: 1995, Vertical spectral representation in primitive equa-

tion models of the atmosphere, Monthly Weather Review 123(8), 2426“2446. Removed

most obstacles to use of spectral methods in z, but their series of vertical normal

modes converged rather slowly.

Moore, D. W. and Philander, S. G. H.: 1977, Modelling of the tropical oceanic circulation,

in E. D. Goldberg (ed.), The Sea, Volume 6, Wiley, New York, pp. 319“361. Hermite

functions.

BIBLIOGRAPHY 643

Moore, S., Healy, Jr, D. M. and Rockmore, D.: 1993, Symmetry stabilization for fast dis-

crete monomial transforms and polynomial evaluations, Lin. Alg. Appl. 192, 249“299.

O(N log2 (N )) discrete Fourier transform on nonuniform grids.

Morf, R., Orszag, S. A. and Frisch, U.: 1980, Spontaneous singularity in three-dimensional,

inviscid compressible ¬‚ow, Phys. Rev. Lett. 44, 572“575. The conclusion that singulari-

ties can form was (mostly) repudiated in Brachet et al.(1983).

Morgan, A. P.: 1987, Solving Polynomial Systems Using Continuation for Scienti¬c and Engi-

neering Problems, Prentice-Hall, Englewood Cliffs, New Jersey. Not spectral.

Morse, P. M. and Feshbach, H.: 1953, Methods of Theoretical Physics, McGraw-Hill, New

York. 2000 pp, (in two volumes) Good treatise on solving linear partial differential

equations through the method of separation of variables.

Morton, K. W.: 1985, Generalised Galerkin methods for hyperbolic problems, Computer

Methods in Applied Mechanics and Engineering 52, 847“871. Not spectral; independent

invention of a semi-Lagrangian method.

Mulholland, L. and Sloan, D.: 1991, The effect of ¬ltering on the pseudospectral solution

of evolutionary partial differential equations, Journal of Computational Physics 96, 369“

390.

Mulholland, L. S. and Sloan, D. M.: 1992, The role of preconditioning in the solution of

evolutionary partial differential equations by implicit Fourier pseudospectral meth-

ods, Journal of Computational and Applied Mathematics 42, 157“174.

Mulholland, L. S., Huang, W.-Z. and Sloan, D. M.: 1998, Pseudospectral solution of near-

singular problems using numerical coordinate transformations based on adaptivity,

SIAM J. Sci. Comput. 19(4), 1261“1289.

Mullholland, L. S., Qiu, Y. and Sloan, D. M.: 1997, Solution of evolutionary PDEs us-

ing adaptive ¬nite differences with pseudospectral post-processing, J. Comput. Phys.

131(2), 280“298.

Nakamura, S.: 1996, Numerical Analysis and Graphic Visualization with MATLAB, Prentice-

Hall, Upper Saddle River, New Jersey. Not spectral.

Namasivayam, S. and Ortiz, E. L.: 1981, Best approximation and the numerical solution of

partial differential equations with the Tau method, Portug. Math. 40, 97“119.

Namasivayam, S. and Ortiz, E. L.: 1993, Error analysis of the Tau method: dependence of

the approximation error on the choice of perturbation term, Computers Math. applic.

25(1), 89“104.

Navarra, A.: 1987, An application of the Arnoldi™s method to a geophysical ¬‚uid dy-

namics problem, Journal of Computational Physics 69, 143“162. Mixed ¬nite differ-

ence/spherical harmonics Galerkin treatment of boundary value problem; Arnoldi™s

method allows computations of unstable modes with as many as 13,000 unknowns.

Navarra, A., Stern, W. F. and Miyakoda, K.: 1994, Reduction of the Gibbs oscillation in

spectral model simulations, J. Climate 7, 1169“1183. Apply several different smoothers

to spherical harmonics series with sucess. Note that the usual second order ¬nite dif-

ferences can be equivalently derived by applying Lanczos smoothing to the spectral

sum for a derivative.

BIBLIOGRAPHY

644

Navon, I. M.: 1987, PENT: A periodic pentadiagonal systems solver, Comm. Appl. Numer.

Meths. 3, 63“69. Not spectral, but useful matrix-solver.

Nicholls, D. P.: 1998, Travelling water waves: Spectral continuation methods with parallel

implementation, J. Comput. Phys. 143(1), 224“240. Fourier pseudospectral solution to

a nonlinear eigenvalue problem.

Nosenchuck, D. M., Krist, S. E. and Zang, T. A.: 1987, Multigrid methods for the Navier-

Stokes Computer, in S. McCormick and K. Stuben (eds), Multigrid Methods, Marcel

Dekker, New York, pp. 491“516.

Nouri, F. Z. and Sloan, D. M.: 1989, A comparison of Fourier pseudospectral methods

for the solution of the Korteweg-deVries equation, Journal of Computational Physics

83, 324“344.

O™Connor, W. P.: 1995, The complex wavenumber eigenvalues of Laplace™s tidal equations

for oceans bounded by meridians, Proceedings of the Royal Society of London A 449, 51“

64. Associated Legendre functions through a recurrence-derived Galerkin methods,

which is susceptible to errors [as con¬rmed by Corrigendum: O™Connor(1996).].

O™Connor, W. P.: 1996, The complex wavenumber eigenvalues of Laplace™s tidal equations

for oceans bounded by meridians: Corrigendum, Proceedings of the Royal Society of

London A 452, 1185“1187.

Orszag, S. A.: 1970, Transform method for calculation of vector coupled sums: Application

to the spectral form of the vorticity equation, Journal of the Atmospheric Sciences 27, 890“

895. Implementing spectral methods in spherical harmonics.

Orszag, S. A.: 1971a, On the elimination of aliasing in ¬nite difference schemes by ¬ltering

high-wavenumber components, Journal of the Atmospheric Sciences 28, 1074. A two-

paragraph classic.

Orszag, S. A.: 1971b, Accurate solution of the Orr-Sommerfeld equation, Journal of Fluid

Mechanics 50, 689“703. Combines Chebyshev method with QR or QZ matrix eigen-

solver to solve a linear stability problem.

Orszag, S. A.: 1971c, Numerical simulations of incompressible ¬‚ows within simple bound-

aries: accuracy, Journal of Fluid Mechanics 49, 75“112.

Orszag, S. A.: 1971d, Numerical simulations of incompressible ¬‚ows within simple bound-

aries: Galerkin (spectral) representations, Studies in Applied Mathematics 50, 293“327.

Orszag, S. A.: 1971e, Galerkin approximations to ¬‚ows within slabs, spheres and cylinders,

Physical Review Letters 26, 1100“1103.

Orszag, S. A.: 1972, Comparison of pseudospectral and spectral approximations, Studies in

Applied Mathematics 51, 253“259.

Orszag, S. A.: 1974, Fourier series on spheres, Monthly Weather Review 102, 56“75.

Orszag, S. A.: 1976, Turbulence and transition: A progress report, in A. I. vander Vooren

and Zandbergen (eds), Proceedings of the Fifth International Conference on Numerical

Fluid Dynamics, number 59 in Lecture Notes in Physics, Springer-Verlag, New York,

pp. 39“51.

BIBLIOGRAPHY 645

Orszag, S. A.: 1979, Spectral methods for problems in complex geometries, in S. V. Parter

(ed.), Numerical Methods for Partial Differential Equations, Academic Press, New York.

Shorter, preliminary version of Orszag (1980).

Orszag, S. A.: 1980, Spectral methods for problems in complex geometries, Journal of Com-

putational Physics 37, 70“92. Independent invention of ¬nite difference precondition-

ing for solving boundary value problems by means of Chebyshev polynomials and

iteration.

Orszag, S. A.: 1986, Fast eigenfunction transforms, in G. C. Rota (ed.), Science and Com-

puters, Academic Press, New York, pp. 23“30. A generalization of the Fast Fourier

Transform to functions that satisfy three-term recurrence relations.

Orszag, S. A. and Israeli, M.: 1974, Numerical simulation of incompressible ¬‚ow, Ann. Revs.

Fluid Mech. 6, 281“318. REVIEW.

Orszag, S. A. and Kells, L. C.: 1980, Transition to turbulence in plane Poiseuille ¬‚ow and

plane Couette ¬‚ow, Journal of Fluid Mechanics 96, 159“205.

Orszag, S. A. and Patera, A. T.: 1980, Subcritical transition to turbulence in plane channel

¬‚ows, Physical Review Letters 45, 989“993.

Orszag, S. A. and Patera, A. T.: 1981, Subcritical transition to turbulence in planar shear

¬‚ow, in R. E. Meyer (ed.), Transition and Turbulence, Academic Press, New York,

pp. 127“146.

Orszag, S. A. and Patera, A. T.: 1983, Secondary instability of wall bounded shear ¬‚ows,

Journal of Fluid Mechanics 128, 347“385.

Orszag, S. A. and Paterson, Jr., G. S.: 1972a, Statistical Models of Turbulence, Springer-Verlag,

New York, chapter Numerical simulation of turbulence, pp. 127“147.

Orszag, S. A. and Paterson, Jr., G. S.: 1972b, Numerical simulation of three dimensional

homogeneous isotropic turbulence, Phys. Rev. Lett. 28, 76“79.

Orszag, S. A. and Tang, C. M.: 1979, Small-scale structure of two-dimensional magnetohy-

drodynamic turbulence, Journal of Fluid Mechanics 90, 129“143.

Orszag, S. A., Israeli, M. and Deville, M.: 1986, Boundary conditions for incompressible

¬‚ows, Journal of Scienti¬c Computing 1, 75“111. Thorough discussion of high order

arti¬cial boundary conditions for fractional step (splitting) time-marching so that the

computed ¬‚ows are both nondivergent and no-slip.

Ortiz, E. L.: 1969, The tau method, SIAM Journal of Numerical Analysis 6, 480“492.

Ortiz, E. L.: 1987, Recent progress in the numerical treatment of singular problems for

partial differential equations with techniques based on the Tau method, in E. L. Ortiz

(ed.), Numerical Approximations of P. D. E., Part III, North-Holland, Amsterdam, pp. 83“

98.

Ortiz, E. L. and Pham Ngoc Dinh, A.: 1987, Linear recursive schemes associated with some

nonlinear partial differential equations in one dimension and the tau method, SIAM

J. Math. Anal. 18(2), 452“464.

Ortiz, E. L. and Pun, K.-S.: 1985, Numerical solution of nonlinear partial differential equa-

tions with the tau method, Journal of Computational and Applied Mathematics 12 and

13, 511“516.

BIBLIOGRAPHY

646

Ortiz, E. L. and Samara, H.: 1981, An operational approach to the Tau method for the

numerical solution of nonlinear differential equations, Computing (Wien) 27, 15“25.

Ortiz, E. L. and Samara, H.: 1983, Numerical solution of differential eigenvalue problems

with an operational approach to the tau method, Computing (Wien) 31, 95“103.

Owens, R. G.: 1998, Spectral approximations on the triangle, Proc. R. Soc. Lond. A 454, 857“

872. Derives a new polynomial basis for the triangle through a Sturm-Liouville eigen-

problem in two dimensions; the eigenfunctions are products of Legendre polynomi-

als in one transformed coordinate with hypergeometric polynomials in the other. A

spectral rate of convergence is proved. The polynomials are used to generate a new

cubature formula for the triangle.

Owens, R. G. and Phillips, T. N.: 1991, A spectral domain decomposition method for the

planar non-Newtonian stick-slip problem, Journal of Non-Newtonian Fluid Mechanics

41, 43“79.

Owens, R. G. and Phillips, T. N.: 1996, Steady viscoelastic ¬‚ow past a sphere using spectral

elements, International Journal of Numerical Methods in Engineering 39(9), 1517“1534.

Flow past sphere embedded in a cylindrical tube.

Panchang, V. G. and Kopriva, D. A.: 1989, Solution of two-dimensional water-wave prop-

agation problems by Chebyshev collocation, Mathematical and Computer Modelling

12, 625“640.

Pascal, F. and Basdevant, C.: 1992, Nonlinear Galerkin method and subgrid-scale model for

two-dimensional turbulent ¬‚ows, Theoretical and Computational Fluid Dynamics 3, 267“

284.

Patera, A. T.: 1984, A spectral element method for ¬‚uid dynamics: laminar ¬‚ow in a chan-

nel expansion, Journal of Computational Physics 54, 468“488.

Patera, A. T.: 1986, Fast direct Poisson solvers for high-order ¬nite element discretizations

in rectangularly decomposable domains, Journal of Computational Physics 65, 474“480.

Combines the eigenfunction scheme of Haidvogel and Zang(1979) with static conden-

sation to create a direct method of O(N 5/2 ) cost.

Patera, A. T. and Orszag, S. A.: 1980, Transition and turbulence in plane channel ¬‚ows, in

R. W. MacCormack and W. C. Reynolds (eds), Proceedings of the 7th International Confer-

ence on Numerical Methods in Fluid Dynamics, Springer-Verlag, New York, pp. 329“335.

Patera, A. T. and Orszag, S. A.: 1981, Finite-amplitude stability of axisymmetric pipe ¬‚ow,

Journal of Fluid Mechanics 112, 467.

Patera, A. T. and Orszag, S. A.: 1986, Instability of pipe ¬‚ow, in A. R. Bishop, D. K. Camp-

bell and B. Nicolaenko (eds), Nonlinear Problems: Present and Future, North Holland,

Amsterdam, pp. 367“377.

Patterson Jr., G. S. and Orszag, S. A.: 1971, Spectral calculation of isotropic turbulence:

Ef¬cient removal of aliasing interaction, Physics of Fluids 14, 2538“2541.

Pellerin, P., Laprise, R. and Zawadzki, I.: 1995, The performance of a semi-Lagrangian

transport scheme for the advection-condensation problem, Monthly Weather Review

123, 3318.

BIBLIOGRAPHY 647

Pelz, R. B.: 1993, Parallel compact FFTs for real sequences, SIAM J. Sci.Comput. 14(4), 914“

935.

Phillips, N. J.: 1956, The general circulation of the atmosphere: A numerical experiment,

Quart. J. Roy. Met. Soc. 82, 123“164. The empirical discovery of aliasing instability.

Phillips, N. J.: 1959, An example of nonlinear computational instability, The Atmosphere and