<< Ïðåäûäóùàÿ ñòð. 19(èç 83 ñòð.)ÎÃËÀÂËÅÍÈÅ Ñëåäóþùàÿ >>
ï£± ï£¼
ï£² ï£½
k
Pk = cj z j | z âˆˆ C; (c0 ; : : : ; ck ) âˆˆ Kk+1
P:zâ†’ : (17)
ï£³ ï£¾
j=0

Sequences:
SK = {{{s0 ; s1 ; : : : ; sn ; : : :}} | sn âˆˆ K; n âˆˆ N0 }: (18)
Sequences with nonvanishing terms:
OK = {{{s0 ; s1 ; : : : ; sn ; : : :}} | sn = 0; sn âˆˆ K; n âˆˆ N0 }: (19)

2.1.2. Special functions and symbols
Gamma function [58, p. 1]:
âˆž
t zâˆ’1 exp(âˆ’t) dt
(z) = (z âˆˆ R+ ): (20)
0

Factorial:
n
n! = (n + 1) = j: (21)
j=1
86 H.H.H. Homeier / Journal of Computational and Applied Mathematics 122 (2000) 81â€“147

Pochhammer symbol [58, p. 2]:
n
(a + n)
(a)n = = (a + j âˆ’ 1): (22)
(a) j=1

Binomial coe cients [1, p. 256, Eq. (6.1.21)]:
(z + 1)
z
= : (23)
w (w + 1) (z âˆ’ w + 1)
Entier function:
<x= = max{j âˆˆ Z: j6x; x âˆˆ R}: (24)

2.2. Sequences, series and operators

2.2.1. Sequences and series
For Stieltjes series see Appendix A.
Scalar sequences with elements sn , tail Rn , and limit s:
{{sn }} = {{sn }}âˆž = {{s0 ; s1 ; s2 ; : : :}} âˆˆ SK ; Rn = sn âˆ’ s; lim sn = s: (25)
n=0 nâ†’âˆž

If the sequence is not convergent but summable to s; s is called the antilimit. The nth element sn
of a sequence = {{sn }} âˆˆ SK is also denoted by n . A sequence is called a constant sequence,
if all elements are constant, i.e., if there is a c âˆˆ K such that sn = c for all n âˆˆ N0 , in which case
it is denoted by {{c}}. The constant sequence {{0}} is called the zero sequence.
Scalar series with terms aj âˆˆ K, partial sums sn , tail Rn , and limit=antilimit s:
âˆž n âˆž
s= aj ; sn = aj ; Rn = âˆ’ aj = sn âˆ’ s: (26)
j=0 j=0 j=n+1

We say that an are Kummer-related to the an with limit or antilimit s if an = snâˆ’1 satisfy an âˆ¼ an
Ë† Ë† Ë† Ë† Ë†
n
for n â†’ âˆž and s is the limit (or antilimit) of sn = j=0 aj .
Ë† Ë† Ë†
Scalar power series in z âˆˆ C with coe cients cj âˆˆ K, partial sums fn (z), tail Rn (z), and
limit/antilimit f(z):
âˆž n âˆž
j j
cj z j = f(z) âˆ’ fn (z):
f(z) = cj z ; fn (z) = cj z ; Rn (z) = (27)
j=0 j=0 j=n+1

2.2.2. Types of convergence
Sequences {{sn }} satisfying the equation
lim (sn+1 âˆ’ s)=(sn âˆ’ s) = (28)
nâ†’âˆž

are called linearly convergent if 0 Â¡ | | Â¡ 1, logarithmically convergent for = 1 and hyperlinearly
convergent for = 0. For | | Â¿ 1, the sequence diverges.
A sequence {{un }} accelerates a sequence {{vn }} to s if
lim (un âˆ’ s)=(vn âˆ’ s) = 0: (29)
nâ†’âˆž

If {{vn }} converges to s then we also say that {{un }} converges faster than {{vn }}.
H.H.H. Homeier / Journal of Computational and Applied Mathematics 122 (2000) 81â€“147 87

A sequence {{un }} accelerates a sequence {{vn }} to s with order Â¿ 0 if
(un âˆ’ s)=(vn âˆ’ s) = O(nâˆ’ ): (30)
If {{vn }} converges to s then we also say that {{un }} converges faster than {{vn }} with order .

2.2.3. Operators
Annihilation operator: An operator A: SK â†’ K is called an annihilation operator for a given
sequence {{ n }} if it satisÃ¿es
for all {{sn }} âˆˆ SK ; {{tn }} âˆˆ SK ; z âˆˆ K;
A({{sn + ztn }}) = A({{sn }}) + zA({{tn }})
A({{ n }}) = 0: (31)
Forward di erence operator.
m g(m) = g(m + 1) âˆ’ g(m); m gm = gm+1 âˆ’ gm ;
k kâˆ’1
m= mm;

= n;
k
k
k
(âˆ’1)kâˆ’j
gn = gn+j : (32)
j
j=0

(k) (k)
Generalized di erence operator n for given quantities = 0:
n
(k) (k) âˆ’1
n = ( n) : (33)
Ëœ (k) (k)
Generalized di erence operator  n for given quantities = 0:
n

Ëœ (k) (k) âˆ’1 2
n = ( n) : (34)
(k) (k)
Generalized di erence operator n[ ] for given quantities = 0:
n
(k) (k) âˆ’1
[ ]fn = ( n ) (fn+2 âˆ’ 2 cos fn+1 + fn ): (35)
n
(k)
Generalized di erence operator @n [ ] for given quantities Ëœ n = 0:
(k)

(k)
@n [ ]fn = ( Ëœ n )âˆ’1 ( (2) (1) (0)
(k)
n+k fn+2 + n+k fn+1 + n+k fn ): (36)
Weighted di erence operators for given P (kâˆ’1) âˆˆ Pkâˆ’1 :
Wn = Wn [P (kâˆ’1) ] =
(k) (k) (k)
P (kâˆ’1) (n): (37)
(k)
k
Polynomial operators P for given P (k) âˆˆ P(k) : Let P (k) (x) = pj xj . Then put
j=0

k
(k)
(k)
P[P ]gn = pj gn+j : (38)
j=0

Divided di erence operator. For given {{x n }} and k; n âˆˆ N0 , put
k k
1
(k) (k)
n [{{x n }}](f(x)) = n (f(x)) = f[x n ; : : : ; x n+k ] = f(x n+j ) ;
x n+j âˆ’ x n+i
j=0 i=0
i=j
88 H.H.H. Homeier / Journal of Computational and Applied Mathematics 122 (2000) 81â€“147

k k
1
(k) (k)
n [{{x n }}]gn = n gn = gn+j : (39)
x n+j âˆ’ x n+i
j=0 i=0
i=j

3. Some basic sequence transformations

3.1. E Algorithm

Putting for sequences {{yn }} and {{gj (n)}}; j = 1; : : : ; k
yn Â· Â· Â· yn+k
g1 (n) Â· Â· Â· g1 (n + k)
(k)
En [{{yn }}; {{gj (n)}}] = ; (40)
. .
..
. .
.
. .
gk (n) Â· Â· Â· gk (n + k)
one may deÃ¿ne the sequence transformation
(k)
En [{{sn }}; {{gj (n)}}]
(k)
En ({{sn }}) = (k) : (41)
En [{{1}}; {{gj (n)}}]
(k)
As is plain using Cramerâ€™s rule, we have En ({{ n }}) = if the n satisfy Eq. (10). Thus, the
sequence transformation yields the limit exactly for model sequences (10).
The sequence transformation E is known as the E algorithm or also as Brezinskiâ€“Havieâ€“Protocol
[102, Section 10] after two of its main investigators, Havie [32] and Brezinski [9]. A good intro-
duction to this transformation is also given in the book of Brezinski and Redivo Zaglia [14, Section
2.1], cf. also Ref. [15].
(k)
Numerically, the computation of the En ({{sn }}) can be performed recursively using either the
algorithm of Brezinski [14, p. 58f ]
(n)
(0)
En ({{sn }}) = sn ; g0; i = gi (n); n âˆˆ N0 ; i âˆˆ N;
(kâˆ’1) (kâˆ’1)
E(n+1) ({{sn }}) âˆ’ En ({{sn }}) (n)
(k) (kâˆ’1)
En ({{sn }}) = En ({{sn }}) âˆ’ gkâˆ’1; k ;
(n+1) (n)
gkâˆ’1; k âˆ’ gkâˆ’1; k
(n+1) (n)
gkâˆ’1; i âˆ’ gkâˆ’1; i
(n) (n) (n)
gk; i = gkâˆ’1; i âˆ’ gkâˆ’; 1; k ; i = k + 1; k + 2; : : : (42)
(n+1) (n)
gkâˆ’1; k âˆ’ gkâˆ’; 1; k
or the algorithm of Ford and Sidi [22] that requires additionally the quantities gk+1 (n+j); j =0; : : : ; k
(k)
for the computation of En ({{sn }}). The algorithm of Ford and Sidi involves the quantities
(k)
En [{{un }}; {{gj (n)}}]
k; n (u) = (43)
(k)
En [{{gk+1 (n)}}; {{gj (n)}}]
for any sequence {{u0 ; u1 ; : : :}}, where the gi (n) are not changed even if they depend on the un and
the un are changed. Then we have
(n)
k (s)
(k)
En ({{sn }}) = (44)
(n)
k (1)
H.H.H. Homeier / Journal of Computational and Applied Mathematics 122 (2000) 81â€“147 89

and the are calculated recursively via
kâˆ’1; n+1 (u) âˆ’ kâˆ’1; n (u)
k; n (u) = : (45)
kâˆ’1; n+1 (gk+1 ) âˆ’ kâˆ’1; n (gk+1 )
Of course, for gj (n) = !n jâˆ’1 (n), i.e., in the context of sequences modelled via expansion (5),
the E algorithm may be used to obtain an explicit representation for any Levin-type sequence
transformation of the form (cf. Eq. (9))
(k)
Tn = T (sn ; : : : ; sn+k ; !n ; : : : ; !n+k ; j (n); : : : ; j (n + k)) (46)
as ratio of two determinants
(k)
En [{{sn =!n }}; {{ jâˆ’1 (n)}}]
(k)
Tn ({{sn }}; {{!n }}) = (k) : (47)
En [{{1=!n }}; {{ jâˆ’1 (n)}}]
This follows from the identity [14]
(k) (k)
En [{{sn }}; {{!n jâˆ’1 (n)}}] En [{{sn =!n }}; {{ jâˆ’1 (n)}}]
= (k) ; (48)
(k)
En [{{1}}; {{!n jâˆ’1 (n)}}] En [{{1=!n }}; {{ jâˆ’1 (n)}}]
that is an easy consequence of usual algebraic manipulations of determinants.

3.2. The d(m) transformations

As noted in the introduction, the d(m) transformations were introduced by Levin and Sidi [54] as
a generalization of the u variant of the Levin transformation [53]. We describe a slightly modiÃ¿ed
variant of the d(m) transformations [77]:
Let sr ; r = 0; 1; : : : be a real or complex sequence with limit or antilimit s and terms a0 = s0 and
ar = sr âˆ’ srâˆ’1 ; r = 1; 2; : : : such that sr = r aj ; r = 0; 1; : : : . For given m âˆˆ N and l âˆˆ N0 with
r=0
l âˆˆ N0 and 06 0 Â¡ 1 Â¡ 2 Â¡ Â· Â· Â· and = (n1 ; : : : ; nm ) with nj âˆˆ N0 the d(m) transformation yields
a table of approximations s(m; j) for the (anti-)limit s as solution of the linear system of equations
 << Ïðåäûäóùàÿ ñòð. 19(èç 83 ñòð.)ÎÃËÀÂËÅÍÈÅ Ñëåäóþùàÿ >>