<<

. 82
( 83 .)



>>


[24] C. Brezinski, J. Van Iseghem, Padà approximations, in: P.G. Ciarlet, J.L. Lions (Eds.), Handbook of Numerical
e
Analysis III, North-Holland, Amsterdam, 1994, pp. 47“222.
[25] C. Brezinski, J. Van Iseghem, A taste of Padà approximation, in: A. Iserles (Ed.), Acta Numerica 1995, Cambridge
e
University Press, Cambridge, 1995, pp. 53“103.
[26] C. Brezinski, M. Redivo Zaglia, Extrapolation Methods, North-Holland, Amsterdam, 1991.
[27] S.J. Brodsky, J. Ellis, E. Gardi, M. Karliner, M.A. Samuel, Padà approximants, optimal renormalization scales, and
e
momentum ow in Feynman diagrams, Phys. Rev. D 56 (1998) 6980“6992.
[28] A. Bultheel, Laurent Series and their Padà Approximations, Birkhauser, Basel, 1987.
e
[29] H. Cabannes (Ed.), Padà Approximation Method and its Application to Mechanics, Springer, Berlin, 1976.
e
[30] F. Chishstie, V. Elias, T.G. Steele, Asymptotic Padà -approximant predictions for renormalization-group functions
e
4
of massive scalar ÿeld theory, Phys. Lett. B 446 (1999) 267“271.
[31] F. Chishstie, V. Elias, T.G. Steele, Asymptotic Padà -approximant method and QCD current correlation functions,
e
Phys. Rev. D 59 (1999) 10513-1“10513-10.
[32] J. Cioslowski, E.J. Weniger, Bulk properties from ÿnite cluster calculations. VIII. Benchmark calculations on the
e ciency of extrapolation methods for the HF and MP2 energies of polyacenes, J. Comput. Chem. 14 (1993)
1468“1481.
„„
[33] J. CÃzek, F. Vinette, E.J. Weniger, Examples on the use of symbolic computation in physics and chemistry:
applications of the inner projection technique and of a new summation method for divergent series, Internat.
J. Quantum Chem. Symp. 25 (1991) 209“223.
„„
[34] J. CÃzek, F. Vinette, E.J. Weniger, On the use of the symbolic language Maple in physics and chemistry:
several examples, in: R.A. de Groot, J. Nadrchal (Eds.), Proceedings of the Fourth International Conference on
Computational Physics PHYSICS COMPUTING ™92, World Scientiÿc, Singapore, 1993, pp. 31“44.
„„
[35] J. CÃzek, E.R. Vrscay, Large order perturbation theory in the context of atomic and molecular physics ”
interdisciplinary aspects, Internat. J. Quantum Chem. 21 (1982) 27“68.
„„ „
[36] J. CÃzek, E.J. Weniger, P. Bracken, V. Spirko, E ective characteristic polynomials and two-point Padà approximants
e
as summation techniques for the strongly divergent perturbation expansions of the ground state energies of
anharmonic oscillators, Phys. Rev. E 53 (1996) 2925“2939.
[37] W.D. Clark, H.L. Gray, J.E. Adams, A note on the T-transformation of Lubkin, J. Res. Nat. Bur. Stand. B 73
(1969) 25“29.
[38] F. Cordellier, Sur la rà gularità des procà dà s 2 d™Aitken et W de Lubkin, in: L. Wuytack (Ed.), Padà Approximation
e e ee e
and its Applications, Springer, Berlin, 1979, pp. 20“35.
[39] A. Cuyt (Ed.), Nonlinear Numerical Methods and Rational Approximation, Reidel, Dordrecht, 1988.
[40] A. Cuyt (Ed.), Nonlinear Numerical Methods and Rational Approximation II, Kluwer, Dordrecht, 1994.
[41] A. Cuyt, L. Wuytack, Nonlinear Methods in Numerical Analysis, North-Holland, Amsterdam, 1987.
[42] M.G. de Bruin, H. Van Rossum (Eds.), Padà Approximation and its Applications, Amsterdam, 1980, Springer,
e
Berlin, 1981.
[43] J.-P. Delahaye, Sequence Transformations, Springer, Berlin, 1988.

[44] A. Draux, P. van Ingelandt, Polynˆ mes Orthogonaux et Approximants de Padà , Editions Technip, Paris, 1987.
o
[45] J.E. Drummond, Summing a common type of slowly convergent series of positive terms, J. Austral. Math. Soc. B
19 (1976) 416“421.
[46] V. Elias, T.G. Steele, F. Chishtie, R. Migneron, K. Sprague, Padà improvement of QCD running coupling constants,
e
running masses, Higgs decay rates, and scalar channel sum rules, Phys. Rev. D 58 (1998) 116007.
[47] J. Ellis, E. Gardi, M. Karliner, M.A. Samuel, Padà approximants, Borel transforms and renormalons: the Bjorken
e
sum rule as a case study, Phys. Lett. B 366 (1996) 268“275.
[48] J. Ellis, E. Gardi, M. Karliner, M.A. Samuel, Renormalization-scheme dependence of Padà summation in QCD,
e
Phys. Rev. D 54 (1996) 6986“6996.
[49] J. Ellis, I. Jack, D.R.T. Jones, M. Karliner, M.A. Samuel, Asymptotic Padà approximant predictions: up to ÿve
e
loops in QCD and SQCD, Phys. Rev. D 57 (1998) 2665“2675.
[50] J. Ellis, M. Karliner, M.A. Samuel, A prediction for the 4-loop ÿ function in QCD, Phys. Lett. B 400 (1997)
176“181.
[51] J. Gilewicz, Numerical detection of the best Padà approximant and determination of the Fourier coe cients of the
e
insu ciently sampled functions, in: P.R. Graves-Morris (Ed.), Padà Approximants and their Applications, Academic
e
Press, London, 1973, pp. 99“103.
354 E.J. Weniger / Journal of Computational and Applied Mathematics 122 (2000) 329“356


[52] J. Gilewicz, Approximants de Padà , Springer, Berlin, 1978.
e
[53] J. Gilewicz, M. Pindor, W. Siemaszko (Eds.), Rational Approximation and its Applications in Mathematics and
Physics, Springer, Berlin, 1985.
[54] S. Gra , V. Grecchi, Borel summability and indeterminacy of the Stieltjes moment problem: application to the
anharmonic oscillators, J. Math. Phys. 19 (1978) 1002“1006.
[55] W.B. Gragg, The Padà table and its relation to certain algorithms of numerical analysis, SIAM Rev. 14 (1972)
e
1“62.
[56] P.R. Graves-Morris (Ed.), Padà Approximants, The Institute of Physics, London, 1973.
e
[57] P.R. Graves-Morris (Ed.), Padà Approximants and Their Applications, Academic Press, London, 1973.
e
[58] P.R. Graves-Morris, E.B. Sa , R.S. Varga (Eds.), Rational Approximation and Interpolation, Springer, Berlin, 1984.
[59] J. Grotendorst, E.J. Weniger, E.O. Steinborn, E cient evaluation of inÿnite-series representations for overlap,
two-center nuclear attraction, and Coulomb integrals using nonlinear convergence accelerators, Phys. Rev. A 33
(1986) 3706“3726.
[60] P. Hillion, Mà thode d™Aitken ità rà e pour les suites oscillantes d™approximations, C. R. Acad. Sci. Paris A 280
e ee
(1975) 1701“1704.
[61] H.H.H. Homeier, E.J. Weniger, On remainder estimates for Levin-type sequence transformations, Comput. Phys.
Comm. 92 (1995) 1“10.
[62] M.J. Jamieson, T.H. O™Beirne, A note on a generalization of Aitken™s 2 transformation, J. Phys. B 11 (1978)
L31“L35.
[63] U.D. Jentschura, P.J. Mohr, G. So , E.J. Weniger, Convergence acceleration via combined nonlinear-condensation
transformations, Comput. Phys. Comm. 116 (1999) 28“54.
[64] M.P. Jurkat, Error analysis of Aitken™s 2 process, Comput. Math. Appl. 9 (1983) 317“322.
[65] M. Karliner, Precise estimates of high orders in QCD, Acta Phys. Polon. B 29 (1998) 1505“1520.
[66] E.E. Kummer, Eine neue Methode, die numerischen Summen langsam convergirender Reihen zu berechnen,
J. Reine Angew. Math. 16 (1837) 206“214.
[67] C.B. Liem, T. Lu, T.M. Shih, The Splitting Extrapolation Method, World Scientiÿc, Singapore, 1995.
[68] S. Lubkin, A method of summing inÿnite series, J. Res. Nat. Bur. Stand. 48 (1952) 228“254.
[69] A.J. MacLeod, Acceleration of vector sequences by multi-dimensional 2 -methods, Comm. Appl. Numer. Methods
2 (1986) 385“392.
[70] G.I. Marchuk, V.V. Shaidurov, Di erence Methods and their Extrapolations, Springer, New York, 1983.
[71] J.H. McCabe, G.M. Phillips, Aitken sequences and generalized Fibonacci numbers, Math. Comp. 45 (1985)
553“558.
[72] M. Prà vost, D. Vekemans, Partial Padà prediction, Numer. Algorithms 20 (1999) 23“50.
e e
[73] A. Pozzi, Applications of Padà Approximation Theory in Fluid Dynamics, World Scientiÿc, Singapore, 1994.
e
[74] P. Sablonniere, Convergence acceleration of logarithmic ÿxed point sequences, J. Comput. Appl. Math. 19 (1987)
55“60.
[75] P. Sablonniere, Comparison of four algorithms accelerating the convergence of a subset of logarithmic ÿxed point
sequences, Numer. Algorithms 1 (1991) 177“197.
[76] P. Sablonniere, Asymptotic behaviour of iterated modiÿed 2 and ‚2 transforms on some slowly convergent
sequences, Numer. Algorithms 3 (1992) 401“409.
[77] P. Sablonniere, Comparison of four nonlinear transforms on some classes of logarithmic ÿxed point sequences,
J. Comput. Appl. Math. 62 (1995) 103“128.
[78] E.B. Sa , R.S. Varga (Eds.), Padà and Rational Approximation, Academic Press, New York, 1977.
e
[79] M.A. Samuel, T. Abraha, J. Yu, The strong coupling constant, s , from W + jet processes: an analysis using Padà e
approximants, Phys. Lett. B 394 (1997) 165“169.
[80] M.A. Samuel, J. Ellis, M. Karliner, Comparison of the Padà approximation method to perturbative QCD calculations,
e
Phys. Rev. Lett. 74 (1995) 4380“4383.
[81] M.A. Samuel, G. Li, Estimating perturbative coe cients in quantum ÿeld theory and the ortho-positronium decay
rate discrepancy, Phys. Lett. B 331 (1994) 114“118.
[82] M.A. Samuel, G. Li, E. Steinfelds, Estimating perturbative coe cients in quantum ÿeld theory using Padà e
approximants, Phys. Rev. D 48 (1993) 869“872.
E.J. Weniger / Journal of Computational and Applied Mathematics 122 (2000) 329“356 355


[83] M.A. Samuel, G. Li, E. Steinfelds, Estimating perturbative coe cients in quantum ÿeld theory and statistical physics,
Phys. Rev. E 51 (1995) 3911“3933; Erratum, Phys. Rev. E 55 (1997) 2072.
[84] D. Shanks, Non-linear transformations of divergent and slowly convergent sequences, J. Math. and Phys.
(Cambridge, MA) 34 (1955) 1“42.
[85] A. Sidi, D. Levin, Prediction properties of the t-transformation, SIAM J. Numer. Anal. 20 (1983) 589“598.
[86] B. Simon, Large orders and summability of eigenvalue perturbation theory: a mathematical overview, Internat.
J. Quantum Chem. 21 (1982) 3“25.
[87] D.A. Smith, W.F. Ford, Acceleration of linear and logarithmic convergence, SIAM J. Numer. Anal. 16 (1979)
223“240.
[88] D.A. Smith, W.F. Ford, Numerical comparisons of nonlinear convergence accelerators, Math. Comp. 38 (1982)
481“499.
[89] T.G. Steele, V. Elias, Padà -improved extraction of s (M ) from R , Mod. Phys. Lett. A 13 (1998) 3151“3159.
e
[90] E.O. Steinborn, E.J. Weniger, Sequence transformations for the e cient evaluation of inÿnite series representations
of some molecular integrals with exponentially decaying basis functions, J. Mol. Struct. (Theochem) 210 (1990)
71“78.
[91] J. Todd, Motivation for working in numerical analysis, in: J. Todd (Ed.), Survey of Numerical Analysis,
McGraw-Hill, New York, 1962, pp. 1“26.
[92] R.R. Tucker, The 2 process and related topics, Paciÿc J. Math. 22 (1967) 349“359.
[93] R.R. Tucker, The 2 process and related topics II, Paciÿc J. Math. 28 (1969) 455“463.
[94] G. Walz, Asymptotics and Extrapolation, Akademie Verlag, Berlin, 1996.
[95] E.J. Weniger, Nonlinear sequence transformations for the acceleration of convergence and the summation of
divergent series, Comput. Phys. Rep. 10 (1989) 189“371.
[96] E.J. Weniger, On the summation of some divergent hypergeometric series and related perturbation expansions,
J. Comput. Appl. Math. 32 (1990) 291“300.
[97] E.J. Weniger, On the derivation of iterated sequence transformations for the acceleration of convergence and the
summation of divergent series, Comput. Phys. Comm. 64 (1991) 19“45.
[98] E.J. Weniger, Interpolation between sequence transformations, Numer. Algorithms 3 (1992) 477“486.
[99] E.J. Weniger, On the e ciency of linear but nonregular sequence transformations, in: A. Cuyt (Ed.), Nonlinear
Numerical Methods and Rational Approximation II, Kluwer, Dordrecht, 1994, pp. 269“282.
[100] E.J. Weniger, Verallgemeinerte Summationsprozesse als numerische Hilfsmittel fur quantenmechanische und
quantenchemische Rechnungen, Habilitation Thesis, University of Regensburg, 1994.
[101] E.J. Weniger, Nonlinear sequence transformations: a computational tool for quantum mechanical and quantum
chemical calculations, Internat. J. Quantum Chem. 57 (1996) 265 “280; Erratum, Internat. J. Quantum Chem. 58
(1996) 319 “321.
[102] E.J. Weniger, A convergent renormalized strong coupling perturbation expansion for the ground state energy of the
quartic, sextic, and octic anharmonic oscillator, Ann. Phys. (NY) 246 (1996) 133“165.
[103] E.J. Weniger, Computation of the Whittaker function of the second kind by summing its divergent asymptotic series
with the help of nonlinear sequence transformations, Comput. Phys. 10 (1996) 496“503.
[104] E.J. Weniger, Construction of the strong coupling expansion for the ground state energy of the quartic, sextic, and
octic anharmonic oscillator via a renormalized strong coupling expansion, Phys. Rev. Lett. 77 (1996) 2859“2862.
[105] E.J. Weniger, Performance of superconvergent perturbation theory, Phys. Rev. A 56 (1997) 5165“5168.
„„
[106] E.J. Weniger, J. CÃzek, Rational approximations for the modiÿed Bessel function of the second kind, Comput. Phys.
Comm. 59 (1990) 471“493.
„„
[107] E.J. Weniger, J. CÃzek, F. Vinette, Very accurate summation for the inÿnite coupling limit of the perturbation series
expansions of anharmonic oscillators, Phys. Lett. A 156 (1991) 169“174.
„„
[108] E.J. Weniger, J. CÃzek, F. Vinette, The summation of the ordinary and renormalized perturbation series for the
ground state energy of the quartic, sextic, and octic anharmonic oscillators using nonlinear sequence transformations,
J. Math. Phys. 34 (1993) 571“609.
[109] E.J. Weniger, J. Grotendorst, E.O. Steinborn, Some applications of nonlinear convergence accelerators, Internat.
J. Quantum Chem. Symp. 19 (1986) 181“191.
[110] E.J. Weniger, C.-M. Liegener, Extrapolation of ÿnite cluster and crystal-orbital calculations on trans-polyacetylene,
Internat. J. Quantum Chem. 38 (1990) 55“74.
356 E.J. Weniger / Journal of Computational and Applied Mathematics 122 (2000) 329“356


[111] E.J. Weniger, E.O. Steinborn, Nonlinear sequence transformations for the e cient evaluation of auxiliary functions
for GTO molecular integrals, in: M. Defranceschi, J. Delhalle (Eds.), Numerical Determination of the Electronic
Structure of Atoms, Diatomic and Polyatomic Molecules, Kluwer, Dordrecht, 1989, pp. 341“346.
[112] H. Werner, H.J. Bunger (Eds.), Padà Approximation and its Applications, Bad Honnef, 1983, Springer, Berlin,
e
1984.
[113] J. Wimp, Sequence Transformations and their Applications, Academic Press, New York, 1981.
[114] L. Wuytack (Ed.), Padà Approximation and its Applications, Springer, Berlin, 1979.
e
[115] L. Wuytack, Commented bibliography on techniques for computing Padà approximants, in: L. Wuytack (Ed.), PadÃ
e e
Approximation and its Applications, Springer, Berlin, 1979, pp. 375“392.
[116] P. Wynn, On a device for computing the em (Sn ) transformation, Math. Tables Aids Comput. 10 (1956) 91“96.
[117] P. Wynn, On the convergence and the stability of the epsilon algorithm, SIAM J. Numer. Anal. 3 (1966) 91“122.
[118] P. Wynn, Upon systems of recursions which obtain among the quotients of the Padà table, Numer. Math. 8 (1966)
e
264“269.
[119] J. Zinn-Justin, Strong interaction dynamics with Padà approximants, Phys. Rep. 1 (1971) 55“102.
e
Journal of Computational and Applied Mathematics 122 (2000) 357
www.elsevier.nl/locate/cam




Author Index Volume 122 (2000)

Brezinski, C., Convergence acceleration during the Prevost, M., Diophantine approximations using Pade
H H
20th century 1} 21 approximations 231}250

Gasca, M. and G. Muhlbach, Elimination techniques: Roberts, D.E., see Graves-Morris, P.R. 51} 80
K
from extrapolation to totally positive matrices
and CAGD 37} 50 Sadok, H., see Jbilou, K. 149}165
Gasca, M. and T. Sauer, On the history of multivari- Salam, A., see Graves-Morris, P.R. 51} 80
ate polynomial interpolation 23} 35 Sauer, T., see Gasca, M. 23} 35
Graves-Morris, P.R., D.E. Roberts and A. Salam, The Sidi, A., The generalized Richardson extrapolation
epsilon algorithm and related topics 51} 80 process GREP  and computation of derivatives
of limits of sequences with applications to the
Homeier, H.H., Scalar Levin-type sequence trans-
d  -transformation 251}273
formations 81}147
Sorokin, V. and J. Iseghem, Matrix Hermite}Pade H
Jbilou, K. and H. Sadok, Vector extrapolation problem and dynamical systems 275}295
methods. Applications and numerical comparison 149}165 Strohmer, T., Numerical analysis of the non-uniform
sampling problem 297}316
Lorentz, R.A., Multivariate Hermite interpolation by
algebraic polynomials: A survey 167}201 Van Iseghem, J., see Sorokin, V. 275}295
Muhlbach, G., see Gasca, M. 37} 50
K
Walz, G., Asymptotic expansions for multivariate
Muhlbach, G., Interpolation by Cauchy}Vander-
K
polynomial approximation 317}328
monde systems and applications 203}222
Weniger, E.J., Prediction properties of Aitken's iter-
ated  process, of Wynn's epsilon algorithm, and
Osada, N., The E-algorithm and the Ford}Sidi algo-
rithm 223}230 of Brezinski's iterated theta algorithm 329}356




0377-0427/00/$ - see front matter 2000 Elsevier Science B.V. All rights reserved.
PII: S 0 3 7 7 - 0 4 2 7 ( 0 0 ) 0 0 5 6 7 - 7

<<

. 82
( 83 .)



>>