<<

. 45
( 47 .)



>>

222 Bibliography

EiH Eisenbud, D., Huneke, C., Cohen-Macaulay Rees algebras and their specializa-
tions, J. Algebra 81 (1983), 202“224.
EKS Eisenbud, D., Koh, J., Stillman, M., Determinantal equations for curves of high
degree, (to appear).
Es.1 Eisenreich, G., p-Vektormoduln und Determinantenideale, Math.Nachr.50(1971),
69“77.
Es.2 Eisenreich, G., Zur Perfektheit von Determinantenidealen, Beitr. Algebra Geom.
3 (1974), 49“54.
Es.3 Eisenreich, G., Hyperdeterminantenideale, Math. Nachr. 67 (1975), 81“89.
Fi Fitting, H., Die Determinantenideale eines Moduls., Jahresber. Deutsche Math.
Verein. 46 (1936), 195“228.
Fl Flenner, H., Divisorenklassengruppen quasihomogener Singularit¨ten, J. Reine
a
Angew. Math. 328 (1981), 128“160.
Fo Fogarty, J., “Invariant theory,” W.A. Benjamin, New York, 1969.
Fs Fossum, R.M., “The divisor class group of a Krull domain,” Springer, Berlin -
Heidelberg - New York, 1973.
Fu Fulton, W., “Intersection theory,” Springer, Berlin - Heidelberg - New York -
Tokyo, 1984.
Gaeta, F., D´termination de la chaˆ syzyg´tique des id´aux matriciels parfaits
Ga e ine e e
et son application a la postulation de leurs vari´t´s alg´brique associ´es, C.R.
´ ee e e
Acad. Sci. Paris 234 (1952), 1833“1835.
Gi Giusti, M., Singularit´s isol´es et nuages de Newton, in: Arcoa, J.M. et al. (Ed.),
e e
“Algebraic Geometry La Rabida 1981,” Lect. Notes Math. 961, Springer, Berlin
- Heidelberg - New York, 1982, pp. 89“102.
GM Giusti, M., Merle, M., Sections da variet´s d´terminantielles par les plans de
ee
coordon´es, in: Arcoa, J.M. et al. (Ed.), “Algebraic Geometry La Rabida 1981,”
e
Lect. Notes Math. 961, Springer, Berlin - Heidelberg - New York, 1982, pp.
103“118.
Go.1 Goto, S., When do the determinantal ideals de¬ne Gorenstein rings?, Sci. Rep.
Tokyo Kyoiku Daigaku, Sec. A 12 (1974), 129“145.
Go.2 Goto, S., The divisor class group of a certain Krull domain, J. Math. Kyoto
Univ. 7 (1977), 47“50.
Go.3 Goto, S., On the Gorensteinness of determinantal loci, J. Math. Kyoto Univ. 19
(1979), 371“374.
Gv Gover, E.H., Multiplicative structure of generalized Koszul complexes, Trans.
Amer. Math. Soc. 185 (1973), 287“307.
GK Grauert, H., Kerner, H., Deformationen von Singularit¨ten komplexer R¨ume,
a a
Math. Ann. 153 (1964), 236“260.
Gn Green, J.A., “Polynomial representations of GL n ,” Lect. Notes Math. 830,
Springer, Berlin - Heidelberg - New York, 1980.
GH Gri¬ths, Ph., Harris, J., “Principles of algebraic geometry,” Wiley, New York,
1978.
Gb Gr¨bner, W., “Moderne algebraische Geometrie,” Springer, Wien, 1949.
o
Gh Grosshans, F., Observable groups and Hilbert™s fourteenth problem, Amer. J.
Math. 95 (1973), 229“253.
Gr Grothendieck, A., “Local cohomology,” (Notes by R. Hartshorne), Lect. Notes
Math. 41, Springer, Berlin - Heidelberg - New York, 1967.
223
Bibliography

GN Gulliksen, T.H., Neg˚ O.G., Un complexe r´solvent pour certains id´aux d´ter-
ard, e e e
minantiels, C. R. Acad. Sci. Paris S´r. A 274 (1972), 16“18.
e
Hz Hadziev, D., Some questions in the theory of vector invariants, Math. USSR-Sb.
1 (1967), 383“396.
Ha.1 Hartshorne, R., Cohomological dimension of algebraic varieties, Ann. Math. 88
(1968), 403“450.
Ha.2 Hartshorne, R., “Algebraic geometry,” Springer, New York - Heidelberg - Berlin,
1977.
He.1 Herzog, J., Certain complexes associated to a sequence and a matrix, Manuscripta
Math. 12 (1974), 217“248.
He.2 Herzog, J., Ein Cohen-Macaulay-Kriterium mit Anwendungen auf den Konor-
malenmodul und den Di¬erentialmodul., Math. Z. 163 (1978), 149“162.
HK Herzog, J., Kunz, E., “Der kanonische Modul eines Cohen-Macaulay-Rings,”
Lect. Notes Math. 238, Springer, Berlin - Heidelberg - New York, 1971.
HV Herzog, J., Vasconcelos, V., On the divisor class group of Rees algebras, J. Alge-
bra 93 (1985), 182“188.
Hi Hilbert, D., “Gesammelte Abhandlungen,” Vol. II, Reprint, Chelsea, New York,
1965.
Ho.1 Hochster, M., Generically perfect modules are strongly generically perfect, Proc.
London Math. Soc. (3) 23 (1971), 477“488.
Ho.2 Hochster, M., Rings of invariants of tori, Cohen-Macaulay rings generated by
monomials, and polytopes, Ann. of Math. 96 (1972), 318“337.
Ho.3 Hochster, M., Grassmannians and their Schubert subvarieties are arithmetically
Cohen-Macaulay, J. Algebra 25 (1973), 40“57.
Ho.4 Hochster, M., Expanded radical ideals and semiregular ideals, Paci¬c J. Math.
44 (1973), 553“568.
Ho.5 Hochster, M., Grade-sensitive modules and perfect modules, Proc. London Math.
Soc. (3) 29 (1974), 55“76.
Ho.6 Hochster, M., Criteria for equality of ordinary and symbolic powers of primes,
Math. Z. 133 (1973), 53“65.
Ho.7 Hochster, M., Cohen-Macaulay rings, combinatorics and simplicial complexes,
in: B.R. McDonald, R.A. Morris (Ed.), “Ring Theory II,” M. Dekker, New York
and Basel, 1977, pp. 171“223.
Ho.8 Hochster, M., Invariant theory of commutative rings, in: Montgomery, S. (Ed.),
“Group actions on rings,” Contemp. Math. 43, Amer. Math. Soc., Providence,
Rh.I., 1985, pp. 161“180.
Ho.9 Hochster, M., “Topics in the homological theory of modules over local rings,”
Regional conference series in mathematics 24, Amer. Math. Soc., Providence,
Rh.I., 1975.
HE.1 Hochster, M., Eagon, J.A., A class of perfect determinantal ideals, Bull. Amer.
Math. Soc. 76 (1970), 1026“1029.
HE.2 Hochster, M., Eagon, J.A., Cohen-Macaulay rings, invariant theory, and the
generic perfection of determinantal loci, Amer. J. Math. 93 (1971), 1020“1058.
HR Hochster, M., Roberts, J.L., Rings of invariants of reductive groups acting on
regular rings are Cohen-Macaulay, Adv. Math. 13 (1974), 115“175.
Hd Hodge, W.V.D., Some enumerative results in the theory of forms, Proc. Camb.
Phil. Soc. 39 (1943), 22“30.
224 Bibliography

HP Hodge, W.V.D., Pedoe, D., “Methods of algebraic geometry,” Vol. II, Cambridge
University Press, Cambridge, 1952.
Hm Humphreys, J.E., “Linear algebraic groups,” Springer, New York - Heidelberg -
Berlin, 1975.
Hu.1 Huneke, C., Powers of ideals generated by weak d-sequences, J. Algebra 68 (1981),
471“509.
Hu.2 Huneke,C., Strongly Cohen-Macaulay schemes and complete intersections, Trans.
Amer. Math. Soc. 277 (1983), 739“763.
Hu.3 Huneke, C., Determinantal ideals of linear type, Arch. Math. 47 (1986), 324“329.
HL Huneke, C., Lakskimibai, V., Arithmetic Cohen-Macaulayness and normality of
the multicones over Schubert varieties in SL(n)/B, (to appear).
Ig Igusa, J., On the arithmetic normality of the Grassmann variety, Proc. Nat.
Acad. Sci. U.S.A. 40 (1954), 309“313.

a J¨hner, U., “Beispiele starrer analytischer Algebren,” Dissertation, Clausthal
a
1974.
Jo J´ze¬ak, T., Ideals generated by minors of a symmetric matrix, Comment. Math.
o
Helv. 53 (1978), 595“607.
JLP J´ze¬ak, T., Lascoux, A., Pragacz, P., Classes of determinantal varieties associ-
o
ated with symmetric and skew-symmetric matrices, Math. USSR Izv. 18 (1982),
575“586.
JP.1 J´ze¬ak, T., Pragacz, P., Syzygies de pfa¬ens, C.R. Acad. Sci. Paris, Ser. A 287
o
(1978), 89“91.
JP.2 J´ze¬ak, T., Pragacz, P., Ideals generated by Pfa¬ans, J. Algebra 61 (1979),
o
189“198.
JPW J´ze¬ak, T., Pragacz, P., Weyman, J., Resolutions of determinantal varieties and
o
tensor complex associated with symmetric and antisymmetric matrices, Ast´ris-e
que 87/88 (1981), 109“189.
Ka Kaplansky, I., “Commutative rings,” Revised Ed., The University of Chicago
Press, Chicago and London, 1974.
Ke.1 Kempf, G.R., On the geometry of a theorem of Riemann, Ann. of Math. 98
(1973), 178“185.
Ke.2 Kempf, G.R., Images of homogenous vector bundles and varieties of complexes,
Bull. Amer. Math. Soc. 81 (1975), 900“901.
Ke.3 Kempf, G.R., On the collapsing of homogeneous bundles, Invent. Math. 37
(1976), 229“239.
Ke.4 Kempf, G.R., Vanishing theorems for ¬‚ag manifolds, Amer. J. Math. 98 (1976),
325“331.
Ke.5 Kempf, G.R., The Hochster-Roberts theorem on invariant theory, Michigan Math.
J. 26 (1979), 19“32.
KKMS Kempf, G.R., Knudsen, F., Mumford, D., Saint-Donat, B., “Toroidal embed-
dings I,” Lect. Notes Math. 339, Springer, Berlin - Heidelberg - New York, 1973.
KeL Kempf, G.R., Laksov, D., The determinantal formula of Schubert calculus, Acta
Math. 132 (1974), 153“162.
Ki Kirby, D., A sequence of complexes associated with a matrix, J. London Math.
Soc. (2) 7 (1973), 523“530.
KmL Kleiman, S., Laksov, D., Schubert calculus, Amer. Math. Monthly 79 (1972),
1061“1082.
225
Bibliography

KL Kleiman, S.L., Landol¬, J., Geometry and deformation of special Schubert vari-
eties, in: Oort, F. (Ed.), “Algebraic geometry, Oslo 1970,” Wolters - Nordhoo¬,
Groningen, 1972.
Kl Kleppe, H., Deformation of schemes de¬ned by vanishing of pfa¬ans, J. Algebra
53 (1978), 84“92.
KlL.1 Kleppe, H., Laksov, D., The generic perfectness of determinantal schemes, in:
Lønstedt, K. (Ed.), “Algebraic Geometry, Copenhagen 1978,” Lect. Notes Math.
732, Springer, Berlin - Heidelberg - New York, 1979, pp. 244“252.
KlL.2 Kleppe, H., Laksov, D., The algebraic structure and deformation of Pfa¬an
schemes, J. Algebra 64 (1980), 167“189.
Kr Kraft, H., “Geometrische Methoden in der Invariantentheorie,” Vieweg, Braun-
schweig, 1985.
Kn Kunz, E., “K¨hler di¬erentials,” Vieweg, Braunschweig - Wiesbaden, 1986.
a
Ku Kutz, R.E., Cohen-Macaulay rings and ideal theory of invariants of algebraic
groups, Trans. Amer. Math. Soc. 194 (1974), 115“129.
La.1 Laksov, D., The arithmetic Cohen-Macaulay character of Schubert schemes, Acta
Math. 129 (1972), 1“9.
La.2 Laksov, D., Deformation of determinantal schemes, Compositio Math. 30 (1975),
273“292.
La.3 Laksov, D., Deformation and transversality, in: Lønstedt, K. (Ed.), “Algebraic
Geometry, Copenhagen 1978,” Lect. Notes Math. 732, Springer, Berlin - Heidel-
berg - New York, 1979, pp. 300“316.
Ls Lascoux, A., Syzygies des vari´t´s d´terminantales, Adv. Math. 30 (1978), 202“
ee e
237.
Le.1 Lebelt, K., Torsion außerer Potenzen von Moduln der homologischen Dimen-
¨
sion 1, Math. Ann. 211, 183“197.
Le.2 Lebelt, K., Freie Au¬‚¨sungen außerer Potenzen, Manuscripta Math. 21 (1977),
o ¨
341“355.
LV Luna, D., Vust, Th., Plongements d™espaces homog`nes, Comment. Math. Helv.
e
58 (1983), 186“245.
Ma Macaulay, F.S., “The algebraic theory of modular systems,” Cambridge Tracts
19, 1916.
Mg Magid, A.R., Finite generation of class groups of rings of invariants, Proc. Amer.
Math. Soc. 60 (1976), 45“48.
Mr.1 Marinov, V., Perfection of ideals generated by the pfa¬ans of an alternating
matrix, C. R. Acad. Bulg. Sci. 31 (1979), 561“563.
Mr.2 Marinov, V., Perfection of ideals generated by the Pfa¬ans of an alternating
matrix, 1, Serdica 9 (1983), 31“42.
Mr.3 Marinov, V., Perfection of ideals generated by the Pfa¬ans of an alternating
matrix, 2, Serdica 9 (1983), 122“131.
Mt Matsumura, H., “Commutative algebra,” Second Ed., Benjamin/Cummings,
Reading, 1980.
Mi Micali, A., Sur des id´aux engendr´es par des d´terminants, Seminaire Dubreil-
e e e
Pisot 1963/64, Exp. 18.
Mo Mount, K.R., A remark on determinantal loci, J. London Math. Soc. 42 (1967),
595“598.
226 Bibliography

MF Mumford, D., Fogarty, J., “Geometric invariant theory,” Second enlarged edition,
Springer, Berlin - Heidelberg - New York, 1982.
Mu Musili, C., Postulation formula for Schubert varieties, J. Ind. Math. Soc. 36
(1972), 143“171.
Na Nagata, M., “Local rings,” Reprint, Robert E. Krieger, Huntington, N.Y., 1975.
Ne Newstead, P.E., Some subvarieties of Grassmannians of codimension 3, Bull.
London Math. Soc. 12 (1980), 176“182.
Ng.1 Ngˆ Viˆt Trung, On the symbolic powers of determinantal ideals, J. Algebra 58
oe .
(1979), 361“369.
Ng.2 Ngˆ Viˆt Trung, Principal systems of ideals, Acta Math. Viet. 6 (1981), 57“63.
oe .
Ni.1 Nielsen, H.A., Tensor functors of complexes, Preprint Series 77/78, No. 15
Aarhus Universitet, Matematisk Institut.
Ni.2 Nielsen,H.A., Free resolutions of tensor forms, Ast´risque 87
e /88 (1981), 289“302.
No.1 Northcott, D.G., Semi-regular rings and semi-regular ideals, Quart. J. Math.
Oxford (2) 11 (1960), 81“104.
No.2 Northcott, D.G., Some remarks on the theory of ideals de¬ned by matrices,
Quart. J. Math. Oxford (2) 14 (1963), 193“204.
No.3 Northcott, D.G., Additional properties of generically acyclic projective complexes,
Quart. J. Math. Oxford (2) 20 (1969), 65“80.
No.4 Northcott, D.G., Grade sensitivity and generic perfection, Proc. London Math.
Soc. (3) 20 (1970), 597“618.
No.5 Northcott, D.G., Generic perfection, Sympos. Math. XI (1973), 105“119.
No.6 Northcott, D.G., “Finite free resolutions,” Cambridge Tracts in Mathematics 71,
Cambridge University Press, Cambridge, 1976.
NR Northcott, D.G., Rees, D., Reductions of ideals in local rings, Proc. Cambridge
Phil. Soc. 50 (1954), 145“158.
PS Peskine, C., Szpiro, L., Dimension projective ¬nie et cohomologie locale, Publ.
Math. I.H.E.S. 42 (1973), 47“119.
Po Poon, K.Y., “A resolution of certain perfect ideals de¬ned by some matrices,”
Thesis, University of Minnesota 1973.
PW.1 Pragacz, P., Weyman, J., Complexes associated with trace and evaluation. An-
other approach to Lascoux™s resolution, Adv. in Math. 57 (1985), 163“207.
PW.2 Pragacz, P., Weyman, J., On the construction of resolutions of determinantal
ideals: A survey, in: “S´min. P. Dubreil et M.-P. Malliavin 1985,” Lect. Notes
e
Math. 1220, Springer, Berlin - Heidelberg - New York, 1986, pp. 73“92.
Qu Quillen, D., Projective modules over polynomial rings, Invent. Math. 36 (1976),
167“171.
Re Rees, D., The grade of an ideal or module, Proc. Camb. Phil. Soc. 53 (1957),
28“42.
Ri Richman, D.R., The fundamental theorems of vector invariants, (to appear).
Robbiano, L., An algebraic property of P1 — PN , Comm. Algebra 7 (1979),
Ro
641“655.
Rb.1 Roberts, P., A minimal free complex associated to the minors of a matrix, (to

<<

. 45
( 47 .)



>>