<<

. 32
( 32 .)



Monopoles, Princeton University Press, Princeton, 1988.
[Bea] A. Beauville, Vari´t´s K¨hleriennes dont la premi`re classe de Chern est nulle,
ee a e
J. Di¬erential Geom. 18 (1983), 755“782.
[Ber] M. Berger, Sur les groupes d™holonomie homog`ne des vari´t´s a connexion a¬ne
e ee
et des vari´t´s Riemanniennes, Bull. Soc. Math. France 83 (1955), 279“330.
ee
[Bes] A. Besse, Einstein Manifolds, Springer-Verlag, Berlin, Heidelberg, New York, 1987.
[Ch] S.-S. Chern, On a generalization of K¨hler geometry, in Algebraic Geometry and
a
Topology: A Symposium in Honor of S. Lefshetz, Princeton University Press, 1957,
103“121.
[FGG] M. Fernandez, M. Gotay, and A. Gray, Four-dimensional parallelizable symplec-
tic and complex manifolds, Proc. Amer. Math. Soc. 103 (1988), 1209“1212.
[Fo] A. T. Fomenko, Symplectic Geometry, Gordon and Breach, New York, 1988.
[GL] K. Galicki and H.B. Lawson, Quaternionic Reduction and quaternionic orbifolds,
Math. Ann. 282 (1988), 1“21.
[GG] M. Golubitsky and V. Guillemin , Stable Mappings and their Singularities, Grad-
uate Texts in Mathematics 14, Springer-Verlag, Berlin, Heidelberg, New York, 1973.
[Gr 1] M. Gromov, Pseudo-holomorphic curves on almost complex manifolds, Inventiones
Mathematicae 82 (1985), 307“347.
[Gr 2] M. Gromov, Partial Di¬erential Relations, Ergebnisse der Math., Springer-Verlag,
Berlin, Heidelberg, New York, 1986.
[Gr 3] M. Gromov, Soft and hard symplectic geometry, Proceedings of the ICM at Berkeley,
1986, 1987, vol. 1, Amer. Math. Soc., Providence, R.I., 81“98.
[GS 1] V. Guillemin and S. Sternberg, Geometric Asymptotics, Mathematical Surveys
14, Amer. Math. Soc., Providence, R.I., 1977.
[GS 2] V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge
University, Cambridge and New York, 1984.
[GS 3] V. Guillemin and S. Sternberg, Variations on a Theme of Kepler, Colloquium
Publications 42, Amer. Math. Soc., Providence, R.I., 1990.
[Ha] R. Hamilton, The inverse function theorem of Nash and Moser, Bulletin of the
AMS 7 (1982), 65“222.

Bib.1 168
[He] S. Helgason, Di¬erential Geometry, Lie Groups, and Symmetric Spaces, Academic
Press, Princeton, 1978.
[Hi] N. Hitchin, Metrics on moduli spaces, in Contemporary Mathematics 58 (1986),
Amer. Math. Soc., Providence, R.I., 157“178.
[HKLR] N. Hitchin, A. Karlhede, U. Lindstrom, and M. Rocek, HyperK¨hler metrics
a
¨ ˇ
and supersymmetry, Comm. Math. Phys. 108 (1987), 535“589.
[Ki] F. Kirwan, Cohomology of Quotients in Symplectic and Algebraic Geometry, Math-
ematical Notes 31, Princeton University Press, Princeton, 1984.
[KN] S. Kobayashi and K. Nomizu, Foundations of Di¬erential Geometry, vols. I and II,
John Wiley & Sons, New York, 1963.
[Kr] P. Kronheimer, The construction of ALE spaces as hyper-K¨hler quotients, J. Dif-
a
ferential Geometry 29 (1989), 665-683.
[La] F. Labourie, Immersions isom´triques elliptiques et courbes pseudo-holomorphes, J.
e
Di¬erential Geometry 30 (1989), 395-424.
[M 1] D. McDuff, Symplectic di¬eomorphisms and the ¬‚ux homomorphism, Inventiones
Mathematicae 77 (1984), 353“366.
[M 2] D. McDuff, Examples of simply-connected symplectic non-K¨hlerian manifolds,
a
J. Di¬erential Geom. 20 (1984), 267“277.
[M 3] D. McDuff, Examples of symplectic structures, Inventiones Mathematicae 89 (1987),
13“36.
[M 4] D. McDuff, Symplectic 4-manifolds, Proceedings of the ICM at Kyoto, 1990, to
appear
[M 5] D. McDuff, Elliptic methods in symplectic geometry, Bull. Amer. Math. Soc. 23
(1990), 311“358.
[MS] J. Milnor and J. Stasheff, Characteristic Classes, Annals of Math. Studies 76,
Princeton University Press, Princeton, 1974.
[Mo] J. Moser, On the volume element on manifolds, Trans. Amer. Math. Soc. 120
(1965), 280“296.
´
[Pa] P. Pansu, Pseudo-holomorphic curves in symplectic manifolds, preprint, Ecole Poly-
technique, Palaiseau, 1986.
[Po] I. Postnikov, Groupes et alg`bras de Lie, (French translation of the Russian original),
e
´
Editions Mir, Moscow 1985.
[Sa] S. Salamon, Riemannian geometry and holonomy groups, Pitman Research Notes in
Math. no. 201, Longman scienti¬c & Technical, Essex, 1989.
[Si] Y. T. Siu, Every K3 surface is K¨hler, Inventiones Math. 73 (1983), 139“150.
a

Bib.2 169
[SS] I. Singer and S. Sternberg, The in¬nite groups of Lie and Cartan, I (The transitive
groups), Journal d™Analyse 15 (1965).
[Wa] F. Warner, Foundations of Di¬erentiable Manifolds and Lie Groups, Springer-
Verlag, Berlin Heidelberg New York, 1983.
[We] A. Weinstein, Lectures on Symplectic Manifolds, Regional Conference Series in
Mathematics 29, Amer. Math. Soc., Providence, R.I., 1976.
[Wo] J. Wolfson, Gromov™s compactness of pseudo-holomorphic curves and symplectic
geometry, J. Di¬erential Geom. 28 (1988), 383“405.
[Ye] R. Ye, Gromov™s compactness theorem for pseudo-holomorphic curves, Transactions
of the AMS , to appear.




Bib.3 170

<<

. 32
( 32 .)