<< Предыдущая

стр. 3
(из 4 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

субстратах
Представляющие существенное коммерческое значение как источники энергии материалы (нефтегаз, метанол, этанол, метан и н-алканы) привлекают внимание биотехнологов как субстраты ряда биотехнологических процессов, главными участниками которых являются бактерии и дрожжи. Естественно, что в разработке технологий использования подобных материалов принимают участие многие нефтяные компании, а сама проблема обсуждалась и изучается различными научно-исследовательскими учреждениями. Наиболее подробно как сырье для получения одноклеточного белка изучался метан, хотя в настоящее время в его использовании для указанной цели имеется достаточно большое количество трудностей. В противоположность этому, большое значение придается метанолу. Так, компанией ICI в Великобритании разработана крупномасштабная (75 000 л) ферментация растительного сырья для метанол утилизирующих бактерий. Компании Hoechst (Германия) и Mitsubishi (Япония) также работают над аналогичными технологиями, предназначенными для использования в качестве продуцентов биомассы дрожжевых клеток вместо бактериальных.
Продукт, выпускавшийся компанией ICI (называемый прутин), использовался исключительно для скармливания животным. Метанол как источник углерода для получения одноклеточного белка обладает многими преимуществами по сравнению с н-парафинами; в нем отсутствуют потенциальные токсичные вещества, он легко растворим в водной фазе в любых концентрациях и при культивировании на средах с метанолом в получаемой биомассе отсутствуют какие-либо остатки углерода (хотя бы потому, что он легко испаряется). Кроме того, имеют значение и другие важные моменты технического порядка.
Завод компании ICI для производства прутина является единственным в своем роде в западном мире и в настоящий момент вследствие цен на метанол не работает с надлежащим экономическим эффектом, поскольку стоимость метанола составляет примерно 50% от стоимости продукта. В США стоимость одноклеточного белка, полученного на метаноле в 2-5 раз дороже, чем при его производстве из рыбной муки. На Среднем Востоке низкая стоимость метанола и относительно высокие цены на рыбную муку в сочетании с необходимостью производства большого количества животных продуктов делают одноклеточный белок типа ICI-прутина весьма привлекательным.
Относительно благоприятная ситуация для производства одноклеточного белка на н-парафинах нефти сложилась в 70-е годы в бывшем Советском Союзе, что было связано с низкими внутренними ценами на нефть. Были построены три крупных завода по культивированию дрожжей рода Candida (в том числе один в Новополоцке). В лучшие годы продукция дрожжевого белка достигала 1 млн т сухой биомассы и обеспечивала потребности сельского хозяйства (добавка в корм животных) и промышленности. Но в середине 80-х все эти заводы остановились в связи с высокой себестоимостью микробного белка (цена была в 2 раза выше, чем кормовой соевый белок).
Широкий спектр исследований, выполненных в 1960-е и 1970-е годы по использованию метанола и сходных соединений в качестве субстратов для получения одноклеточного белка, дали существенный стимул совершенствованию ферментационных технологий, направленных на его производство в крупномасштабных количествах. Упоминавшееся выше аэробное производство прутина является самым крупным из непрерывных процессов и, по существу, представляет собой крупнейшую в мире биотехнологичеокую систему, что в свою очередь, вследствие необходимости строжайшей экономии, обусловило прогресс в разработках биореакторов с восходящим воздушным потоком (эрлифтных ферменторов).
Весьма подходящим сырьем для получения одноклеточного белка, предполагаемого к использованию в пищу человека, является этанол. В скором времени перспективы производства одноклеточного белка на этаноле будут определяться рядом локальных факторов: возможностями расщепления этилена, наличием излишков углеводов сельскохозяйсвенного происхождения, политическими ситуациями в региональной экономической самостоятельности, а также состоянием уровня мирового производства.
Одноклеточный белок на отходах
Рециклизация отходов растений, появляющихся в различного рода производствах (таких, как солома, выжимки, отходы цитрусовых, сыворотка молока, меласса, навоз животных и бытовые сточные воды), представляет существенную проблему биотехнологии. В отдельных местах количество таких отходов достигает значительных величин, что является источником серьезного загрязнения различных водных систем и вообще окружающей среды. Поэтому использование указанных органических отходов может способствовать достижению двух целей: снижению загрязнения и созданию пищевого белкового препарата. Привлекательность растительных отходов, содержащих углеводы, состоит в их низкой стоимости, в результате чего удешевляется биотехнологический процесс, а также в том, что одноклеточный белок может быть получен при относительно небольшом количестве операций.
Обоснованием для разработки технологии производства одноклеточного белка на растительных отходах является их пригодность для микробной конверсии, наличие в достаточных количествах и в течение длительного периода, а также уровень уже имеющихся технологий. Процессы, использующие продукты отходов в производстве одноклеточного белка, базируются на основании коммерческих соображений с применением различных дрожжевых организмов в подходящих ферменторных системах. Субстратами для организмов-продуцентов служат: меласса (Sacharomyces cerevisiae), молочная сыворотка в производстве сыра (Kluyeromyces fragilis), отходы крахмального производства с использованием двух видов дрожжей (Endomycopsis fibuligera и Candida utilis). Питательная ценность дрожжей, получаемых в данном процессе, была определена в многочисленных обширных экспериментах по скармливанию этого одноклеточного белка различным видам животных (свиньям, цыплятам и телятам). В проведенных опытах регистрировался хороший рост животных и отсутствие неблагоприятных последствий.
Заслуживает внимания новый продукт - Pekilo, представляющий собой грибной белок, получаемый путем ферментации углеводов мелассы, молочной сыворотки, отходов фруктов, гидролизатов древесины или сельскохозяйственного сырья. Продукт характеризуется хорошим аминокислотным составом и богат витаминами. Испытания на животных показали, что Pekilo-протеин является хорошим источником белка в питании свиней, телят, бройлеров, кур-несушек и производится при непрерывном культивировании. Используемый для его производства организм является мицелиальным грибом, а получаемый продукт обладает выраженной фиброзной структурой, что делает готовый препарат удобным для применения.
В Британии компания Ranks Hovis McDoudall совместно с корпорацией ICI поставляет на рынок другой грибной белок (mycoprotein), получаемый при выращивании гриба Fusarium на простых углеводах. Непохожий почти ни на один из других типов, одноклеточный белок микопротеин производится для употребления в пищу людей. Продукт также производится путем непрерывной ферментации. Разработка и внедрение данного микопротеина (получаемого с помощью гриба Fusarium фирмой Ranks Hovis McDoudall) оценивается по произведенным затратам более чем в 40 млн. фунтов стерлингов, а осуществление проекта заняло свыше 20 лет. Первоначально процесс осуществлялся посредством одноразовой ферментации, но затем была разработана технология непрерывного культивирования. Кульминацией проекта считается не только продукция грибной биомассы, но и получение ценных для пищевого продукта характеристик.
Целлюлоза в сельскохозяйственных и лесных материалах, а также в различных отходах должна составить в недалеком будущем основной сырьевой компонент для многих биотехнологических процессов, включая и одноклеточный белок. Целлюлоза в ее естественной ассоциации с лигнином до сих пор является наиболее распространенным органическим веществом для биологической конверсии. Различные исследовательские учреждения настойчиво изыскивают пути предварительной обработки биологических материалов подобного рода с целью деструкции лигнинового барьера (преимущественно физическими и химическими методами).
Удаление лигнина из лигноцеллюлозы делает последнюю потенциальным источником энергии для жвачных животных, способных использовать ее в качестве пищи. Таким путем лигноцеллюлозные материалы (солома, выжимки и даже древесина) могут стать полезными кормовыми препаратами для животных.
Многие виды грибов долгое время служили пищей для человека и выращивались на лигноцеллюлозных материалах. Данные процессы являются примерами низкоэнергетических технологических систем. Процессы различаются по типу используемого субстрата или получаемого продукта, а также по степени изощренности (изобретательности) методологии процесса. В то время как большинство процессов получения одноклеточного белка основано на жидкостных ферментациях, многие из современных способов деградации целлюлозы базируются на ферментации с пониженным увлажнением, известной под термином «твердофазная ферментация».
Во многих странах некоторая часть соломы, получающейся в сельскохозяйственных производствах, традиционно используется для компостирования с лошадиным навозом для получения субстрата, пригодного при выращивании грибов (Agaricus lisporus ). Ежегодно "грибная" промышленность Британии потребляет около 300 000 т соломы для приготовления компоста, на котором выращивают грибы. Технологии, основанные на использовании микроорганизмов и методов биохимической инженерии в целях производства больших количеств биомассы, напоминают сельскохозяйственное производство. Однако так называемый "грибной процессинг", рассматриваемый в качестве примера общей биотехнологии, считается какой-то пренебрежительной областью "новых" биотехнологических разработок, хотя большое число съедобных грибов в настоящее время выращивается искусственным путем в различных странах мира. Новинки в эту область стали проникать сравнительно недавно, однако "вознаграждение" в скором будущем окажется, по оценкам специалистов, огромным. Биотехнология, как ни странно, не всегда должна быть высоко технологичной. В развивающихся странах, где дорогостоящие системы могут оказаться неприемлемы в виду стоимости процессов и отсутствия грамотных операторов, различного рода новые биотехнологические разработки целесообразно использовать для совершенствования (улучшения) уже существующих традиционных микробиологических процессов.
Основными примерами твердофазной ферментации являются многие
типы обработки ряда пищевых продуктов, применяющиеся в странах
Востока. В этих процессах некоторые мягкие материалы (горох, бобы,
отруби и т. п.) служат объектами микробной переработки (гидролиз
крахмала и белков) с целью получения продуктов улучшенного качества
(например, улучшение аромата продукта, обогащение его белком и
аминокислотами). Примерами традиционной пищи на Востоке являются
мисо, соевый соус и др., обычно изготавливаемые в "домашних"
масштабах. Однако многие из этих блюд составляют основу крупных
промышленных производств, требующих существенного
биотехнологического оснащения. Подобные блюда и ароматизированные соусы медленно, но верно, распространяются на Запад и несомненно станут в недалеком будущем составной частью нашего ежедневного меню.
Одноклеточный белок из сельскохозяйственного сырья
Выше было показано, каким образом микроорганизмы могут использоваться для получения одноклеточного белка из органических отходов типа сахаров, крахмала и целлюлозы. Почему же в таком случае не выращиваются растения специально для применения в качестве субстрата, на котором можно было бы получать одноклеточный белок микробиологическим способом? Концепция производства растительной биомассы в качестве материала для биотехнологических процессов крайне актуальна и важна. В настоящее время такого рода программы используются в большей степени для производства этанола, но вполне обоснованно полагать, что маниока, сахарный тростник и некоторые виды пальм могут явиться перспективным сырьем, которое подвержено быстрым ферментативным обработкам с достаточно высоким экономическим эффектом. Если лигноцеллюлоза окажется способной легко и экономически выгодно утилизироваться какими-нибудь микрорганизмами, то большинство районов мира получат готовые питательные субстраты, пригодные для различных биотехнологических процессов.
Одноклеточный белок из водорослей
Одно время существовал повышенный интерес к проблеме использования водорослей в качестве одноклеточного белка, поскольку они хорошо растут в открытых прудах и нуждаются только в СО2 как источнике углерода, а также в солнечном свете как источнике энергии для фотосинтеза. Такие водоросли, как Chlorella и Scenedesmus, долгое время использовались в пищу в Японии, a Spirulina широко применялась в Африке и Мексике. В некоторых странах мира водоросли выращивают в прудах или лагунах для удаления с их помощью ряда органических загрязнений, а образующуюся массу собирают, высушивают и добавляют в порошкообразном виде в корм животным.
Экономические аспекты применения одноклеточного белка
Экономическая целесообразность одноклеточного белка определяется его конкурентной способностью по сравнению с существующими продуктами. Препараты микробного белка богаты данным веществом и могут длительное время храниться и транспортироваться на дальние расстояния. Применение одноклеточного белка предполагается в будущем преимущественно в качестве кормовых добавок в пищу животным в целях замены других белковых материалов (таких, как соевая мука или рыбная мука). Несмотря на то что производство одноклеточного белка даже в промышленных масштабах является биологическим процессом, его внедрение не должно нарушать установившиеся в природе экологические равновесия (балансы). С этой целью в биотехнологии его получения устраняется вероятность появления каких-либо синтетических соединений и применяются (по возможности) технологии, основанные на использовании систем рециклизации, для предотвращения загрязнения окружающей среды.
Процессы получения одноклеточного белка обычно весьма объемны и энергетически очень емки и кроме того должны осуществляться в стерильных условиях, что требует дорогого оснащения, которое должно чиститься и подвергаться стерилизации. Обязательным условием является предотвращение попадания в конечный продукт посторонней микрофлоры, особенно патогенной для человека. Для того чтобы производство одноклеточного белка было экономически выгодным, масштабы его должны достигать по крайней мере 50 000 т в год готового продукта. А это, в свою очередь, требует наличия соответствующего обеспечения сырьевым материалом, который желательно иметь поблизости от основного производства. Довольно большие потребности в воде, которая нужна также для процессов завершающей обработки продукта и охлаждения.

Широкомасштабные процессы, разрабатываемые для производства одноклеточного белка, в значительной степени зависят от успехов современной биотехнологии. Поэтому в его производстве участвуют на разных этапах специалисты в области микробиологии, биохимии, генетики, химии и химической инженерии, пищевой технологии, сельского хозяйства, животноводства, экологии и токсикологии, медицины, ветеринарии и конечно экономики.
Заключение
Нет никаких сомнений, что существенные импульсы развитию производства одноклеточного белка будут поступать из ужесточающегося законодательства, связанного с увеличением объема плотных и жидких отходов, загрязняющих внешнюю среду (т. е. из требований охраны окружающей среды). Кроме того, постоянно должна повышаться конкурентоспособность одноклеточного белка, будущее которого в значительной мере зависит от снижения производственных затрат и, конечно, улучшения качества. Последнее может достигаться за счет использования более дешевых сырьевых материалов, совершенствования ферментационных процессов и завершающих стадий обработки получаемого продукта, а также повышения активности продуцентов.

Отделение, очистка и модификация продуктов
Конечные стадии при биотехнологических
процессах
Завершающие стадии биотехнологических процессов - выделение целевого продукта - существенно различаются в зависимости от того, накапливается продукт в клетке или он выделяется в культуральную жидкость, или же продуктом является клеточная биомасса. Наиболее сложным является выделение внутриклеточного продукта. При этом клетки необходимо отделить от среды культивирования, подвергнуть их разрушению, а затем целевой продукт очистить от остатков разрушенных клеток.
Выделение продукта существенно облегчается, если он экскретируется продуцентом в культуральную жидкость. Поэтому одной из насущных задач биотехнологии является создание промышленных штаммов микроорганизмов, секретирующих возможно большее число ценных продуктов в значительных количествах.
Технология выделения и очистки в значительной степени определяется природой целевого продукта. В ряде случаев существует возможность не использовать тщательную очистку продукта, если он обладает требуемыми активностями в неочищенном состоянии и если примесь посторонних веществ не оказывает каких-либо нежелательных влияний при его использовании. Некоторые традиционные биотехнологические процессы вообще исключают этап отделения продукта.
Отделение биомассы
Первым этапом в процессе очистки целевого продукта является разделение культуральной жидкости и клеточной биомассы сепарация. В некоторых случаях сепарации предшествует специальная обработка реакционной смеси, способствующая более эффективному отделению биомассы и стабилизации выделяемого продукта. Применяются различные методы сепарации.
1. Флотация. Метод используется в том случае, если клетки продуцента в силу низкой смачиваемости накапливаются в поверхностных слоях содержимого биореактора. Особые устройства (флотаторы) различной конструкции удаляют образующуюся при культивировании пену вместе с прилипшими к пузырькам газа клетками. Повышение эффективности отбора биомассы достигается вспениванием жидкости с последующим отделением ее верхнего слоя механическим путем. Достоинствами метода является его экономичность, высокая производительность и возможность использования в непрерывных процессах.
2. Фильтрация. Различны применяемые в настоящее время фильтрующие системы (барабанные, ленточные, тарельчатые фильтры, карусельные вакуум-фильтры, фильтры-прессы, мембранные фильтры) основаны на одинаковом принципе - задержке биомассы на пористой фильтрующей перегородке. Недостатком способа является налипание клеток на фильтре, слой которых снижает скорость протока жидкости в процессе фильтрования. Для фильтров непрерывного действия предусматриваются системы автоматической очистки от биомассы, забивающей поры. Она может сдуваться с поверхности фильтров сжатым воздухом или удаляться специальными "ножами".
Существуют также фильтры для многократного или однократного периодического использования. Например, мембранные (в частности, тефлоновые) фильтры, позволяющие фильтровать очень разбавленные клеточные взвеси. Однако проблемой их использования является быстрая закупорка пор клетками, белками и другими коллоидными частицами. Приемы механического удаления материала, забивающего фильтры, при данном способе фильтрации не пригодны, так как повреждают мембраны. Приемлемым путем преодоления затруднений такого рода является покрытие мембранных фильтров гидрофильным слоем, препятствующим контакту белков (коллоидов) с поверхностью фильтра, либо обработкой фильтров гидролитическими ферментами. 3. Центрифугирование.
Данный способ требует более дорогостоящего оборудования, чем фильтрование, поэтому он применяется если: а) суспензия фильтруется слишком медленно; б) возникает необходимость максимального освобождения культуральной жидкости от содержащихся в ней частиц; в) требуется обеспечить непрерывный процесс сепарации, когда фильтры рассчитаны на периодическое действие.
Центрифугирование и фильтрация в некоторых биотехнологических процессах осуществляется в комбинации, т. е. применяются фильтрационные центрифуги, в которых разделение жидкой и твердой фазы основано на двух процессах фильтровании и центрифугировании.
Довольно широко используются приемы, где разделение обеспечивается лишь центробежной силой. Наиболее перспективными в этом отношении являются центрифуги-сепараторы, в которых отделяемая биомасса оседает па стенках вращающегося цилиндра или специальных тарельчатых вставках.
Методы разрушения клеток
Разрушение клеток проводится физическими, химическими и ферментативными методами. Наибольшее промышленное значение имеют физические способы дезинтеграции: 1) ультразвуком; 2) лопаточными или вибрационными дезинтеграторами - метод, обычно используемый в пилотных и промышленных установках; 3) встряхиванием со стеклянными бусами; 4) продавливанием через узкие отверстия под высоким давлением; 5) раздавливанием замороженной массы; 6) растиранием в специальных ступках; 7) с помощью осмотического шока; 8) многократным замораживанием и оттаиванием; 9) сжатием клеточной взвеси с последующим резким снижением давления (декомпрессией).
Физические способы дезинтеграции отличаются большей экономичностью в сравнении с другими методами, однако они характеризуются отсутствием выраженной специфичности, вследствие чего обработка может отрицательно влиять на качество получаемого целевого продукта.
Мягкое и избирательное разрушение клеточной стенки обеспечивается применением химических и ферментативных методов. Так, бактериальные клетки разрушаются лизоцимом в присутствии ЭДТА (этилендиаминтетрауксусной кислоты), а клеточные стенки дрожжей зимолиазой улитки или ферментами грибного либо актиномицетного происхождения. Клеточные стенки микроорганизмов могут быть разрушены путем обработки толуолом или бутанолом. Элективный лизис клеток вызывается воздействием ряда антибиотиков: полимиксин, новобиоцин, нистатин и др. Кроме того, к аналогичным результатам приводит обработка клеток некоторыми поверхностно-активными веществами.
После дезинтеграции клеток необходимо избавляться от их «обломков», для чего используют те же методы, что и при сепарации, т.е. центрифугирование или фильтрацию. Однако в связи со структурой обрабатываемого материала в данном случае приходится применять более скоростные центрифуги и фильтры с меньшим диаметром пор (в большинстве случаев используются мембранные фильтры). Обычно в большинстве биотехнологических процессов «обломки» клеток выбрасывают как отходы, но возможно и их специальное получение в виде целевого продукта.
Отделение и очистка продуктов
Выделение целевого продукта из культуральной жидкости или получаемого в результате процессов дезинтеграции гомогената разрушенных клеток осуществляется путем осаждения, экстракции или различных методов адсорбции. Приведенная на рис. 4 схема очистки противоопухолевых антибиотиков хорошо демонстрирует использование различных процедур для выделения продуктов ферментации.
Осаждение растворенных веществ осуществляется физическими (нагревание, разведение или концентрирование, охлаждение раствора) или химическими воздействиями, переводящими растворенное вещество в малорастворимое состояние. Естественно, что в зависимости от целей и свойств выделяемого продукта подбирается тот или иной метод и то или иное воздействие, т. е. подбирается реагент и т. п.
Экстракция подразделяется на твердо-жидкофазную (при которой продукт из твердой фазы переходит в жидкую) и жидко-жидкофазную (когда обеспечивается перевод продукта из одной жидкой фазы в другую, также жидкую фазу).
Твердо-жидкофазная экстракция сводится порой к простой обработке твердого образца водой или органическим растворителем с целью извлечения из него растворимых соединений. Достаточно широко применяются различные органические растворители, в частности экстрагирование ацетоном, который эффективно переводит в раствор ряд липидных и белковых компонентов клеток.
При жидко-жидкофазной экстракции используются различные органические растворители - алкилфенолы, эфиры, галогениды, гексан, хлороформ и др. Эффективность экстракции может быть
Полная ферментационная культура (1500 л, 8,3 мкг/мл у1 и 7мкг/мл 51))

EtOAc (1500 л)
t _ Этанолацетат
Клеточные остатки
Водная фаза Экстракт в EtOAc
(1400 л, 5,2 мкг/мл у1)
1.Концентрировали до сиропа 2. Выливали в 9 л гексана



Гексановый раствор
Осадок в гексане


1.Растворили в этилацетате
Высушили над Na2SO4
Осадили из эфира гексаном
Грубый калихимициновый комплекс (53 г, 3,4г уь 2 г 51 и следы других форм)

Хроматография на колонке С18 с сепралитом
CH3CN-0,2 M NH4Oac (45:55)

Калихимицин а3 6 г, 12% чистоты

Сефадекс LH20 Колонка (гексан-CH2Cl2-EtOH)
2:1:1
Калихимицин 51 и у1 9,8г, 22%51 , 20% у1
Колонка с силикагелем Сефадекс LH20 (EtOH и MeOH (97:3)



I
Калихимицин а3
670 мг
Калихимицин 51
1,472 мг
Калихимицин у 1,818 мг (65% чистоты)
Калихимицин у1
1508 мг
Калихимицин в 48 мг


Рис.4. Процесс получения иодинированных калихимицинов из среды ферментации штамма UV785
существенно повышена: 1) многократной обработкой экстрагирующим агентом; 2) подбором оптимального растворителя; 3) подогревом экстрагирующего агента или экстрагируемой жидкости, содержащей продукт; 4) понижением давления в аппарате для экстракции, что обеспечивает довольно эффективную экстракцию при относительно низкой температуре. Последнее снижает затраты и уменьшает риск инактивации извлекаемого продукта.
Почти полностью избежать инактивации позволяют методы экстрагирования на холоду, т. е. путем использовании методов криоэкстракции. При этом уравниваются различия между твердым субстратом и культуральной жидкостью, поскольку и то и другое находится в замороженном состоянии (в одной фазе). Криоэкстракция проводится с применением растворителей, температура кипения которых низка и при обычной комнатной температуре находящихся в газообразном состоянии.
Криоэкстракция может применяться в сочетании с криоконсервацией клеток. Клеточная биомасса может длительное время сохранять свои свойства в условиях глубокого замораживания, а затем из нее может быть экстрагирован целевой продукт.
В некоторых случаях экстрагирующий агент может быть не в жидком, а в газообразном состоянии (при жидко-газофазной или твердо-газофазной экстракции).
Адсорбция является достаточно распространенным методом отделения продукта и рассматривается в качестве частного случая экстракции, при котором экстрагирующим агентом служит твердое тело. Механизм ее сводится к связыванию выделяемого из жидкой или газообразной фазы вещества поверхностью твердого тела. Традиционными адсорбентами являются древесный уголь, пористые глины и т. п.
Более современные методы разделения веществ включают хроматографию, электрофорез, изотахофорез, электрофокусировку, которые основаны на принципах экстракции и адсорбции.
Разделение веществ путем хроматографии основано на их неодинаковом распределении между двумя несмешивающимися фазами. Различают хроматографию на бумаге, пластинках и колонках. При хроматографии на бумаге или на пластинках одной из несмешивающихся фаз является движущийся растворитель, а другой (неподвижной фазой) служат волокна бумаги или частицы покрывающего пластинку какого-то материала (например, силикагеля). При колоночной хроматографии подвижной фазой является протекающий через колонку растворитель, а неподвижную фазу представляет заполняющий колонку адсорбент (чаще всего это гранулированный гель). Колоночная хроматография допускает масштабирование процесса, в результате чего она довольно широко применяется в промышленных условиях и включает несколько разновидностей:
• Ионообменная хроматография, колонка наполняется гранулами адсорбента, которые несут заряженные катионные (NH4) или анионные (SO4) группы, способные захватывать ионы противоположного заряда. Данный метод используется для выделения ионизированных веществ из жидкости, а также для очистки нейтральных соединений от примесей ионной природы.
Метод "молекулярных сит", гель-хроматография, гель-фильтрация. Виды хроматографии, основанные на разделении веществ с различной молекулярной массой и диаметром частиц. Адсорбент захватывает и удерживает, например, только низкомолекулярные соединения, пропуская соединения с более высокой молекулярной массой.
Афинная хроматография. Метод базируется на задерживании комплекса, образующегося из компонента разделяемой смеси и лиганда, который фиксирован на частицах носителя (наполнителя колонки). При данном методе используются агенты, способные специфически связывать какое-нибудь одно конкретное вещество. Например, фермент очищают на колонке, заполненной его субстратом или специфическим ингибитором (таблица).
Весьма эффективный метод разделения и очистки белковых и небелковых веществ основан на взаимодействии антигенов и антител. Разработанный на основании таких взаимодействий способ получил название имунно-аффинной хроматографии, который существенно повысил разрешающую способность при введении в практику использования моноклональных антител. Блестящей иллюстрацией его эффективности является высокая степень одноэтапной очистки человеческого интерферона (чистота повышается примерно в 500 раз).
В аффинной хроматографии могут использоваться групповые лиганды, связывающие, например, группу сходных по структуре ферментов. Такими лигандами являются кофакторы ферментов или их аналоги. Могут применяться и еще менее специфичные лиганды, связывающие довольно обширные классы веществ; например, алкильные и арильные группы или лиганды, представляющие собой текстильные красители.
Преимущество аффинной хроматографии состоит в том, что с ее помощью можно в одну стадию осуществить полную очистку продукта из сложной многокомпонентной смеси (культуральной жидкости, цельных клеточных экстрактов и т. п.), тогда как другие способы требуют многоэтапной очистки и сопряжены с большими затратами труда и времени. Однако метод имеет и ряд недостатков, в частности высокая цена материалов, используемых в аффинной хроматографии (например, веществ, применяемых в качестве лигандов), а также быстрое забивание колонки пропускаемыми веществами. Последнее заставляет использовать их в периодическом, а не в непрерывном режиме. После каждого выделения продукта колонки промывают и частицы заполняющего геля также подвергаются очистке.
Помимо аффинной хроматографии (которая иногда называется еще аффинной адсорбцией в геле) в крупномасштабных биотехнологических процессах для очистки продуктов все шире применяют аффинную преципитацию и аффинное разделение.
При аффинной преципитации лиганд соединяется с растворимым носителем и, после взаимодействия с соответствующим выделяемым соединением, образующийся комплекс по мере его формирования выпадает в осадок. Иногда ускорение выпадения преципитата достигается путем добавления электролитов.
Аффинное разделение основано на использовании системы, состоящей из двух водорастворимых полимеров, один из которых несет специфические лиганды, а другой обладает сродством к примесным компонентам. В качестве примера можно привести разделение нуклеиновых кислот и белков. Для полимера, соединяемого с лигандом, берется полиэтиленгликоль, а другим компонентом является декстран.
Наряду с хроматографией перспективными методами разделения веществ при биотехнологических процессах являются электрофорез и его модификации. В этих методах разделяемая смесь помещается в мощное электрическое поле, обеспечивающее движение ионизированных компонентов смеси. Различие в электрофоретической подвижности позволяет пространственно разделить входящие в ее состав компоненты. Современные варианты электрофореза используют (как и хроматография) пластинки или колонки с образующими гель наполнителями (агароза, полиакриламид, сефароза, оксиапатит и др.).
Модификацией метода электрофореза является изоэлектрическая фокусировка или электрофокусировка. В этом методе раствор, насыщающий гель, содержит соединение с кислотно-основными группами. Под влиянием электрического поля кислотно-основные группы буферного соединения меняют степень ионизации, создавая тем самым градиент рН в направлении электрического поля. Электрически заряженные компоненты разделяемой смеси, нанесенной на гель, мигрируют по направлению к электроду противоположного знака. Поскольку эти компоненты передвигаются по градиенту рН, то они постепенно теряют свои заряды и в зоне, где рН соответствует изоэлектрической точке (точке электронейтральности), их движение прекращается. Каждый компонент концентрируется (фокусируется) в определенной области геля.
Концентрирование продукта
За отделением продукта следует этап его концентрирования с помощью основных методов - обратного осмоса, ультрафильтрации и выпаривания. При методе обратного осмоса концентрируемый раствор помещается в мешок из полупроницаемой мембраны, снаружи создается осмотическое давление, превышающее осмотическое давление раствора, в результате чего растворитель начинает вытекать через мембрану против градиента концентрации растворенного вещества, обусловливая дальнейшее концентрирование раствора.
Ультрафильтрация представляет собой способ разделения вещества (вернее его концентрирование) с помощью мембранных фильтров. Технология ультрафильтрации привлекает своей простотой, относительной экономичностью и щадящим обращением с продуктом, поскольку осуществляется при умеренно низком внешнем давлении. Кроме того, в данном методе не требуется изменение рН, ионной силы раствора или перевода продукта в другую фазу. Поэтому метод перспективен при концентрировании малостабильных продуктов (некоторые аминокислоты, антибиотики и ферменты).
Метод выпаривания наиболее древний и обладает существенным недостатком: для удаления растворителя концентрируемый раствор следует нагревать, но тем не менее данный способ достаточно широко используется, особенно в лабораториях. В производственных условиях чаще применяются вакуумные испарители, обеспечивающие более щадящий режим концентрирования. Нагревающим агентом обычно служит водяной пар, хотя используется также обогрев жидким теплоносителем или электрическими нагревателями.
Выпаривающие аппараты бывают периодического и непрерывного действия с однократной и многократной циркуляцией кипящего раствора. С целью достижения равномерного обогрева разрабатываются различного рода конструктивные усовершенствования систем выпаривания.
Концентрирование методом выпаривания может ограничиваться стадией получения сиропообразного раствора целевого продукта; такая процедура называется упариванием и получаемый продукт относится к категории жидких. Дальнейшее освобождение от влаги, остающейся в продуктах после обратного осмоса, ультрафильтрации или выпаривания, достигается путем особой стадии - сушки.
Обезвоживание продукта (сушка)
В биотехнологии применяются различные методы сушки, выбор которых определяется физико-химическими и биологическими свойствами обезвоживаемого продукта, в частности от вязкости раствора или степени сохранности жизнеспособности, если дело имеют с живыми объектами. Перспективным методом является обезвоживание в газообразных нагревающих агентах (пар, воздух, углекислый газ, дымовые газы и т. д.), которые с высокой скоростью подаются в сушильный аппарат снизу, а частицы обезвоживаемого продукта парят в этом газовом потоке. Схема такого сушильного аппарата напоминает газофазный реактор. Преимущество данного способа состоит в возможности регулировать интенсивность массо-тепло-обмена за счет изменения продолжительности пребывания препарата в воздушном потоке, а также возможность организации непрерывного процесса. Недостатком метода является прилипание продукта к стенкам сушильной камеры.
Для обезвоживания микробных взвесей применяются так называемые барабанные сушилки, в которых подогреваемые барабаны вращаются в сосудах с микробной взвесью. Соприкасаясь со стенками барабана, взвесь обезвоживается и биомасса присыхает к поверхности барабана. Засохшую биомассу удаляют специальными ножами.
Особо лабильные материалы сушат в вакуумных сушильных шкафах при пониженных давлениях и температурах. Довольно широкое распространение в биотехнологических производствах получили распылительные сушильные аппараты, в которых обезвоживающиеся растворы или суспензии превращаются путем пропускания через форсунки (или вращающиеся диски) в аэрозоль, который подается в сушильную камеру с нагретым газом (до примерно 110-150 0С). В таких сушилках выживаемость бактериальных культур достигает лишь 20-30%, что явно не удовлетворяет требуемому качеству препаратов.
Наиболее широко используются лиофильные сушки, особенно для высушивания лабильных белковых препаратов или препаратов медицинского назначения. Препараты предварительно замораживаются, и вода испаряется из замороженного состояния при высоком вакууме.
Модификация продуктов
Различного рода модификации необходимы в тех случаях, когда в результате процесса получается лишь "заготовка" целевого продукта. Так, например, пенициллин модифицируется до полусинтетических препаратов, поступающих для практического использования как коммерческие препараты. В некоторых случаях при биотехнологическом процессе продуцент образует какую-то определенную структуру, к которой уже химическим путем добавляется необходимый компонент. Иногда биологический объект участвует на каком-либо одном этапе химических процессов, обеспечивающих синтез целевого продукта.
Модификация является необходимым этапом при получении многих ферментов, гормонов и препаратов медицинского назначения. Соединения животного или растительного, а также микробного происхождения зачастую необходимо изменять таким образом, чтобы придать им требуемые для тех или иных целей качества. Например, у бычьего инсулина удаляются аминокислотные остатки, после чего он становится идентичным человеческому гормону.
Стабилизация продукта
Для сохранения требуемых свойств получаемых продуктов в процессе их хранения, реализации и использования потребителями применяют различного рода физико-химические воздействия с целью повышения его стабильности. Показано, что определенная степень обезвоживания существенно повышает стабильность активностей ферментов, включая и устойчивость к нагреваниям. Стабилизация ферментов также достигается добавлением к препаратам глицерина или углеводов, которые формируют многочисленные водородные связи с аминокислотными остатками, препятствуя тем самым их денатурированию при нагревании или спонтанной инактивации.
В некоторых случаях стабилизация продукта представляет собой задачу особого биотехнологического процесса, а не только простой физико-химической модификации. В качестве примера можно привести стабилизацию пищевого продукта, получаемого из яичных желтков -меланжа, свойства которого при хранении существенно изменяются, что делает его непригодным к использованию. Однако порчу меланжа можно предотвратить, если удалить из него углеводы посредством выращивания на меланже пропионовокислых бактерий. Бактерии "выедают" углеводы, повышают питательную ценность продукта за счет обогащения органическими кислотами и витаминами В, а также значительно удлиняют сроки хранения меланжа.
7
Ферментативная технология
Ферменты являются сложными органическими соединениями, присутствующими в живых клетках, где они функционируют как катализаторы различных биохимических реакций превращений разных химических соединений. Хотя ферменты образуются только в живых клетках, многие из них могут быть выделены из клеток без потери активности и способны работать в условиях in vitro.
Ферментная технология включает продукцию, выделение, очистку, использование в растворенной форме и, наконец, применение в иммобилизованном виде ферментов в широком круге реакторных систем. Ферментная технология, вне всякого сомнения, обеспечит в будущем разрешение наиболее насущных проблем, стоящих перед обществом; например, обеспечением пищей, источниками энергии (ее сохранением и использованием с максимальной эффективностью), а также улучшением окружающей среды.
Эта новая технология происходит из биохимии, но в значительной степени из микробиологии, химии и инженерных отраслей. В будущем, надо полагать, ферментная технология в сочетании с генетической инженерией обеспечит существенный прогресс во многих областях биотехнологии.
Применение ферментов
С давних пор в таких процессах, как пивоварение, изготовление хлеба и производство сыра, использовалась (хотя и не понимаемая) деятельность ферментов. В результате эмпирических совершенствований эти традиционные технологии получили широкое распространение задолго до того момента, когда сформировались научные знания о механизмах этих процессов.
На Западе понимание промышленного значения ферментов складывалось в процессе использования дрожжей и солода с тех времен, когда традиционное пивоварение и выпечка хлеба занимало существенную долю производства. На Востоке аналогичными процессами были производство саке и разнообразные пищевые ферментации, использующие нитевидные грибы в качестве источника ферментативной активности.
1896 г. считается достоверным началом современной микробной ферментной технологии с получением первого коммерческого продукта новой отрасли - такадиастазы, представляющей собой грубую (неочищенную) смесь гидролитического фермента, приготавливаемую путем выращивания гриба Aspergillus oryzae на отрубях ячменя.
Быстрое развитие ферментной технологии началось с середины 50-х годов на основе использования грибных (микробных) ферментов. Причиной этого главным образом явилось следующее:
Интенсивное развитие практики глубинного культивирования микроорганизмов, связанных с производством антибиотиков, что, в свою очередь, потребовало новых знаний и привело к быстрому внедрению появляющихся разработок в производство.
Быстрое развитие основных знаний о свойствах ферментов, обусловливающее реализацию их потенциала для целей промышленного катализа.
Свободные от клеток ферменты имеют в настоящее время широкое применение во многих химических процессах, в которых участвует большое количество последовательных реакций. Однако ферментные процессы, в которых используются в качестве катализаторов микробные клетки, характеризуются довольно большим числом ограничений:
1. Большая часть субстрата в обычных условиях превращается в
микробную биомассу.
2. Наличие (или возможное появление) побочных реакций,
приводящих к накоплению значительных количеств отходов.
Условия для роста микроорганизма могут быть иными, нежели для образования и накопления необходимого продукта.
Выделение и очистка необходимого продукта из культуральной жидкости могут быть сопряжены со значительными трудностями. Многие (если не все) из этих перечисленных недостатков могут быть существенно уменьшены путем использования чистых ферментов и, по-видимому, при дальнейших совершенствованиях методов применения ферментов они будут практически решены. В будущем многие традиционные ферментные процессы могут быть заменены использованием многоферментных реакторов, которые способны обеспечить высокоэффективную утилизацию субстратов, обусловить более высокий выход и намного лучшую однородность получаемых продуктов. Большинство ферментов, используемых в промышленности, являются внеклеточными ферментами, т. е. ферментами, секретируемыми микроорганизмами во внешнюю среду. Таким образом, если микроорганизм продуцирует ферменты для расщепления больших молекул до ассимилируемых (низкомолекулярных) форм, то ферменты обычно экскретируются в окружающую (культуральную) среду. В таких случаях культуральная (ферментационная) жидкость, получаемая при выращивании микроорганизмов (например, дрожжей или мицелиальных грибов, бактерий), является основным источником протеаз, амилаз и в несколько меньшей степени целлюлаз, липаз и других гидролитических ферментов. Многие промышленные ферменты, являясь гидролазами, могут функционировать без дополнительных сложных кофакторов; они легко выделяются (сепарируются от биомассы) без разрушения клеточных стенок продуцентов и хорошо растворимы в воде. Но поскольку большинство ферментов микроорганизмов по своей природе являются внутриклеточными, то наибольший прогресс в биотехнологии может ожидаться именно при их использовании для промышленных целей. Однако в этом случае возникает необходимость разработки эффективных способов их выделения и очистки.
Индустриальный рынок ферментов до 1965 г. был сравнительно небольшим, когда ферменты начали широко использоваться для изготовления различного рода детергентов. В последующие несколько лет промышленное производство ферментов резко возросло. Естественно, увеличивается и мощность производств, выпускающих ферменты и для других целей, например гидролиза
крахмала, изомеризации глюкозы во фруктозу, изготовления молочных продуктов (в том числе сыров) (табл. 2, рис. 5). Многие
ферменты, такие, как протеазы, амилазы, глюкозоизомеразы, производятся десятками тонн, на сумму около 1 млрд. долларов.
Новые технологии, такие, как технология рекомбинантных ДНК, а также улучшение методов ферментации и последующей обработки целевых продуктов ("процессинга"), несомненно значительно снизят затраты производства (и в первую очередь стоимость ферментных препаратов), сделав их более конкурентоспособными в сравнении с
химическими препаратами.
Среди многих новых областей и возможностей ферментной технологии существенное место отводится утилизации лигноцеллюлозы (или просто древесных материалов). Это "обильное" (с избытком имеющееся в природе) сырье должно использоваться человеком, и многие исследовательские разработки направлены на создание эффективных способов деструкции данного сложного органического соединения. Если это удастся осуществить, то биотехнологию ожидает блестящее будущее.
Технология производства ферментов
Несмотря на то что многие весьма полезные и ценные ферменты продуцируются клетками животных и растений, все же предполагается, что большая часть промышленных разработок в области ферментной технологии будет основываться на ферментах, получаемых из микроорганизмов. Даже в солодовом процессе при пивоварении, где используется амилаза, получаемая из проростков ячменя, относительно недорогая, и на основании которой строится повсеместное приготовление пива, по-видимому, не выдержит конкуренции с все увеличивающимся внедрением в эти процессы бактериальных ферментов аналогичного действия.
Использование микроорганизмов в качестве источников производства ферментов стимулируется следующими основными факторами:
высокой степенью специфической активности в пересчете на единицу сухого веса продукта;
сезонными колебаниями количества и качества сырьевых материалов и возможностью их длительного сохранения в зависимости от климатических изменений;
возможностью выбора нужного фермента из широкого спектра микробных катализаторов, характеризующихся различной степенью устойчивости к повышенным температурам рН
среды;
• возможностями промышленной генетики оптимизировать количества выхода ферментов и способов селекции штаммов-продуцентов путем мутагенеза, изменения условий культивирования, а также (в последнее время) применения практически неограниченных возможностей методов генетической инженерии. Приемы селекции различных микроорганизмов довольно сложны и включают многие факторы, такие, как стоимость культивирования, способность секретировать фермент во внешнюю среду или накапливать его внутри клетки, а также способность противостоять неблагоприятным воздействиям внешней среды, повреждающим ферменты, и т. п. В зависимости от происхождения ферменты существенно различаются между собой по термостабильности и по отношению к экстремальным значениям рН. Так, например, протеазы Bac. subtilis относительно стабильны при нагреваниях и активны в щелочной среде, в силу чего считаются более подходящими для использования в качестве добавок в стиральные порошки и моющие средства. В противоположность этому, грибные амилазы, вследствие их высокой чувствительности к нагреванию, пригодны в хлебопечении и т. д.
При селекции продуцентов ферментов генетики промышленных микроорганизмов стремятся улучшить желаемые их свойства: высокий выход фермента, стабильность фермента, независимость синтеза фермента от индуктора, легкое его извлечение из среды и т. п., тогда как нежелательные качества стараются устранить или ингибировать. К числу последних относятся наличие вредных побочных метаболитов, неприятный запах, нежелательный цвет препарата и т. п. Сложная генетическая техника, однако, еще не нашла широкого применения и большинство производств использует главным образом приемы мутагенеза в сочетании с хорошо отработанными селекционными методами. Общим недостатком большинства промышленных микроорганизмов является их малая генетическая изученность, что, естественно, снижает возможности улучшения полезных свойств продуцентов ферментов за относительно короткий период времени. Однако технология переноса генов вместе с белковой инженерией способны изменить эту ситуацию и обусловить развитие новых направлений в области ферментной технологии.
Поскольку микробные ферменты являются малообъемными препаратами относительно невысокой стоимости, методы, применяемые для их производства, обычно осуществляются с использованием биореакторов (ферментеров), аналогичных по конструкции и функциях таковым, которые применяются при производстве антибиотиков. Выбор культуральной среды является весьма важным моментом в процессе производства, так как она обеспечивает растущий микроорганизм энергией, а также является источником необходимых элементов (углерода, азота и т. д.). Стоимость сырьевого материала непосредственно связана с ценой конечного продукта.
В большинстве случаев ферменты получаются при ферментации с одноразовой загрузкой, длящейся от 30 до 150 часов; процессы, основанные на непрерывном (проточном) культивировании, нашли пока еще малое применение в промышленном производстве ферментов.
В процессе выращивания продуцентов ферментов, последние могут накапливаться внутри клеток или же секретироваться во внешнюю среду. Коммерческие препараты ферментов могут выпускаться в продажу либо в жидкой, либо в кристаллической форме; очищенными или же в виде " грубых" препаратов. Например, в препаратах, используемых для гидролиза крахмала, целлюлозы, основным критерием является высокая активность основного фермента в препарате, а наличие других активностей зачастую не принимают во внимание. В то же время в препаратах ферментов, используемых в молекулярной биологии, медицине, основным критерием качества является отсутствие дополнительных ферментативных активностей и просто белковых загрязнений.
Концентрирование и очистка ферментов зачастую представляет собой весьма сложные процессы. И естественно, что стоимость препаратов ферментов зависит от всех перечисленных выше моментов.
Ферментные препараты, предназначенные для использования в пищевой промышленности или в медицинской практике, подлежат строгому контролю на токсичность для животных, мутагенную активность, тератогенность и канцерогенность, а также проверяются в различных фармакологических тестах.
Ответственность за безопасность выпускаемых ферментных препаратов ложится на фирму, их производящую. Практически, безопасный ферментный препарат должен обладать низкими аллергическими свойствами и быть свободным от токсических веществ, а также вредоносных микроорганизмов.
Иммобилизованные ферменты
В последние 15-20 лет на стыке ряда химических и биологических дисциплин сложилось новое "инженерное" направление - химическая энзимология, стремительное развитие которой было обусловлено созданием биологических катализаторов нового типа -иммобилизованных ферментов. А разработка метода иммобилизованных ферментов определялась, в свою очередь, рядом существенных факторов, затрудняющих использование чистых ферментов во многих промышленных производствах.
Во-первых, чистые препараты ферментов неустойчивы при длительном хранении, а также при разного рода воздействиях, особенно тепловых.
Во-вторых, в виду сложности отделения ферментов от различных реагентов смеси многократное их использование весьма затруднено. Однако принципиально новые перспективы открылись перед прикладной энзимологией с разработкой принципов создания иммобилизованных ферментов. Иммобилизованные ферментные препараты обладают рядом существенных преимуществ при использовании в прикладных (промышленных целях) производствах по сравнению с чистыми препаратами. Гетерогенный (иммобилизованный) катализатор легко отделить от реакционной среды, что обусловливает:
возможность остановки реакции в любой нужный момент;
повторное использование катализатора;
получение конечного продукта, не загрязненного ферментом. Последний момент весьма важен при производстве пищевых и
медицинских продуктов. Применение иммобилизованного катализатора позволяет проводить ферментный процесс непрерывно и регулировать скорость реакции, а также изменять количество получаемого продукта в соответствии с изменениями скорости протока реакционной смеси. Иммобилизация или некоторая модификация фермента может обусловить изменения и некоторых его свойств (специфичность взаимодействия с субстратом; зависимость каталитической активности от рН, ионного состава и других параметров среды, а также его стабильность по отношению к различного рода денатурирующим воздействиям). Иммобилизация ферментов дает возможность регулировать их каталитическую активность за счет изменения свойств носителя.
Для иммобилизации ферментов используются также различные типы неорганических носителей, таких, как создаваемые на основе силикагеля, глины, керамик, природных минералов, металлов и их оксидов.
Основными качествами, определяющими широкое внедрение неорганических носителей в производственные процессы, является легкость их регенерации и возможность придания им любой конфигурации. Они могут применяться как в виде порошков, шариков, так и монолитов; они могут быть как пористыми, так и сплошными (непористыми).
Определенное преимущество для различного рода работ имеют носители, приготавливаемые на основе микропористых кремнеземов. К их достоинствам следует отнести механическую прочность, химическую инертность по отношению ко многим растворителям, наличие жесткого скелета с заданным размером пор, а также устойчивость к микроорганизмам. Недостатками кремнеземов является их использование в ограниченном диапазоне рН, а также явление неспецифической сорбции на их поверхности, хотя последнее может быть устранено различными модифицирующими воздействиями. Правда, стоимость кремнеземных носителей относительно высока, и модификация еще больше повышает цену, поэтому внедрение их в промышленность существенно ограничено.
Более пригодными для промышленного использования могут оказаться природные алюмосиликаты - глины, а также пористая керамика, в состав которой, помимо алюмосиликатов, входят окислы титана, циркония или другие добавки. Следует также упомянуть такие широко распространенные носители, как уголь и графитированная сажа. Весьма перспективными носителями являются приготавливаемые на основе металлов и их оксидов, которые характеризуются высокой механической прочностью, относительной дешевизной, стабильностью и хорошими гидродинамическими свойствами.
Иммобилизация представляет собой включение фермента в такую среду, в которой для него доступной оказывается лишь ограниченная часть общего объема. На практике для иммобилизации ферментов используют рутинные физические и химические методы. Все существующие методы физической иммобилизации (т. е. иммобилизации, при которой фермент не соединяется с носителем ковалентными связями) могут быть подразделены на четыре основные группы:
адсорбция на поверхности нерастворимого носителя (или как иногда говорят матрикса);
включение в поры геля;
пространственное разделение фермента от остальной части реакционной смеси с помощью полупроницаемой мембраны;
• введение фермента а двухфазную реакционную среду, в которой он растворим, но может находиться только в одной из фаз.
Как и всякая другая классификация, приведенная ниже, является в значительной степени условной, так как не всегда существует возможность проведения четкой границы между различными способами иммобилизации.
Адсорбционная иммобилизация является наиболее старым из всех существующих в настоящее время способов иммобилизации ферментов. Носителями при данном способе иммобилизации могут быть как органические, так и неорганические вещества, которые применяются а виде порошка, мелких гранул или шариков. Иммобилизация ферментов путем адсорбции на нерастворимых носителях отличается исключительной простотой и достигается путем обеспечения контакта водного раствора фермента с избранным для конкретной цели носителем. После отмывки неадсорбированного фермента препарат готов к применению.
На процесс адсорбции и прочность связывания фермента с носителем оказывают определенное влияние различные факторы внешней среды, основными из которых являются: удельная поверхность и пористость носителя, значения рН среды, ионная сила раствора фермента, его концентрация, а также температура проведения адсорбции. Иными словами, эффективность иммобилизации ферментов определяется сбалансированностью ряда факторов и нарушение этого баланса может привести к резкому ослаблению взаимодействия фермента с носителем. Для исключения подобной ситуации, на практике используется набор методических приемов, способствующих повышению эффективности процесса и, следовательно, получению более качественных препаратов.
Иммобилизация путем включения в гели состоит в том, что молекулы фермента включаются в трехмерную сетку, образованную тесно переплетающимися нитями (цепями), формирующими гель. Пространство между полимерными цепями в геле заполнено водой, на долю которой приходится обычно значительная часть общего объема геля. Для иммобилизации фермента в геле существует два основных способа:
при одном из них фермент вводится в водный раствор мономера, а затем уже проводят полимеризацию, в результате которой формируется гель с включенными в него молекулами фермента,
второй способ состоит в том, что фермент вносится в раствор уже готового полимера, который затем каким-либо образом переводят в требуемое состояние, гелеобразное состояние.
Иммобилизация путем включения в полупроницаемые мембраны -состоит в том, что водный раствор фермента отделяется от водного раствора субстрата полупроницаемой мембраной, способной легко пропускать небольшие молекулы субстрата, задерживая крупные молекулы фермента. Существующие модификации этого метода различаются лишь способами получения полупроницаемых мембран и их природой.
К этим модификациям относятся: микрокапсулирование в замкнутых сферических пузырьках, имеющих тонкую полимерную стенку (мембрану).
Метод двойного эмульгирования, в соответствии с которым приготовленная заранее эмульсия водного раствора фермента в органическом растворе полимера вновь диспергируется в воде. После затвердевания органического раствора образуются полимерные сферические частицы с иммобилизованными в них молекулами фермента.
Способ включения в волокна отличается от метода микрокапсулирования главным образом формой получаемых препаратов. Если при микрокапсулировании образуются сферические микрокапсулы, то при этом способе формируются нити. Для иммобилизации ферментов можно использовать также выпускаемые промышленностью полимерные полые волокна, изготавливаемые из природных или синтетических материалов. Для проведения ферментативной реакции волокна, по которым циркулирует раствор фермента, погружаются в сосуд с раствором субстрата, диффундирующим через мембрану внутрь волокна.
В медицинских целях и некоторых фундаментальных исследованиях достаточно широко используется метод иммобилизации ферментов путем их включения в липосомы, поскольку такие системы близки природным мембранам и могут дать весьма ценную информацию о ферментативных процессах, протекающих в клетках. Существует несколько модификаций данного способа, самой последней из которых является иммобилизация путем включения в полимерные липосомы. Полимерные липосомы характеризуются более высокой стабильностью по сравнению с обычными.
Основным недостатком всех мембранных систем, применяемых для иммобилизации ферментов, является невозможность ферментативного превращения высокомолекулярных субстратов, для которых мембраны представляют собой непреодолимые барьеры.
Иммобилизация ферментов с использованием систем двухфазного типа сводится к тому, что ограничение свободы перемещения фермента в системе достигается не вследствие его фиксирования на жестком носителе, а в результате его способности растворяться только в одной из фаз двухфазной системы.
Химические методы иммобилизации ферментов
Главным отличительным признаком химических методов иммобилизации является то, что вследствие химических взаимодействий в молекуле фермента возникают новые ковалентные связи, в частности между ним и носителем. Препараты иммобилизованных ферментов, получаемые с использованием химических методов, обладают, по крайней мере, двумя существенными достоинствами. Во-первых, формирующаяся ковалентная связь между ферментом и носителем обеспечивает высокую прочность образующих конъюгатов. Во-вторых, химическая модификация ферментов способна приводить к существенным изменениям их свойств (субстратной специфичности, каталитической активности и стабильности).
Существует большое число химических реакций, используемых для ковалентного связывания ферментов с неорганическими носителями (такими, как керамика, стекло, железо, цирконий и титан) или природными полимерами (такими, как сефароза и целлюлоза), а также синтетическими полимерными веществами (нейлон, полиакриламид и другие виниловые полимеры или сополимеры, обладающие реакционно-способными группами).
Во многих из этих процедур ковалентное связывание ферментов с носителем является не специфичным, т. е. ассоциирование фермента с носителем осуществляется за счет химически активных группировок фермента, распределенных по его молекуле случайным образом. Основным является создание техники конъюгирования, при которой ферменты связывались бы с носителем достаточно эффективно, но без снижения их каталитической активности. Короче говоря, химическая иммобилизация ферментов в целом является своеобразным искусством, уровень которого определяется качествами экспериментатора.
Для получения иммобилизованных ферментов используют большое количество различных как органических, так и неорганических носителей. Основные требования, предъявляемые к материалам, которые могут служить для иммобилизации ферментов, следующие:
высокая химическая и биологическая стойкость;
высокая механическая прочность;
достаточная проницаемость для фермента и субстратов, большая удельная поверхность, высокая пористость;
возможность получения трубок, листов и т.п.;
легкая активация (переведение в реакционноспособную форму);
высокая гидрофильность, позволяющая проводить реакции связывания с ферментом в водной среде;
невысокая стоимость.
Отсутствие в природе универсальных носителей, обладающих сразу всеми перечисленными свойствами, обусловливает широкий набор применяемых для иммобилизации ферментов материалов.
Органические полимерные носители
Используемые в настоящее время органические носители можно разделить на два класса: 1 - природные полимеры, 2 - синтетические полимерные носители. Первые, в свою очередь, подразделяются на группы в соответствии с их биохимической классификацией: полисахаридные, белковые и липидные носители. Синтетические полимеры также могут быть подразделены на несколько групп: полиметиленовые, полиамидные и полиэфирные носители.
Помимо вышеупоминавшихся требований, к рассматриваемым носителям предъявляются дополнительные, обусловленные методом иммобилизации, свойствами иммобилизуемого фермента, а также способом дальнейшего использования получаемого препарата:
при ковалентном иммобилизации носитель должен связываться только с теми функциональными группами на молекуле фермента, которые не являются ответственными за катализ;
носители не должны оказывать ингибирующего действия на фермент.
Применение природных полимеров в качестве носителей аргументируется их доступностью и наличием свободных функциональных групп, легко вступающих в разнообразные химические реакции, а также их высокой гидрофильностью. К недостаткам следует отнести неустойчивость к воздействию некоторых микроорганизмов и относительно высокую стоимость многих из них.
Полисахариды
Наиболее часто для иммобилизации ферментов используют целлюлозу, декстран, агарозу и их производные. Целлюлоза отличается высокой степенью гидрофильности и наличием большого числа гидроксильных групп, что обусловливает ее легкое модифицирование путем введения различных заместителей. Для увеличения механической прочности целлюлозу гранулируют, что делает ее относительно дешевым и удобным для иммобилизации различных ферментов носителем. Гранулированная целлюлоза легко превращается в различные ионообменные производные. Однако она неустойчива к действию сильных кислот, щелочей и некоторых окислителей, что ограничивает области ее применения.
Хитин - природный аминополисахарид, напоминающий некоторым образом целлюлозу и является компонентом наружного скелета ракообразных, насекомых, а также входит в состав оболочек некоторых грибов. Являясь отходом промышленной переработки креветок и крабов, данное соединение имеется в достаточно больших количествах при относительно низкой стоимости. Хитин обладает пористой структурой, не растворяется в воде, разбавленных кислотах и щелочах, а также в органических растворителях. Путем обработки щелочами хитин превращается в хитозан, который в качестве носителя дает хорошие результаты, поскольку препараты иммобилизованных ферментов, приготовленные с помощью хитозана, обладают высокой каталитической активностью и устойчивы к микробному воздействию.
Декстран - разветвленный полисахарид бактериального происхождения, содержащий остатки глюкозы. Приготовленные на его основе гели выпускаются различными зарубежными фирмами и широко используются в различного рода работах, Некоторые из них известны под названием "сефадекс" (Швеция) и "молселект" (Венгрия).
Гели, приготовленные на основе декстрана, отличаются высокой стойкостью по отношению к различным химическим веществам, что делает их весьма широко используемыми в различного рода исследованиях и на производстве. К группе декстранов может быть отнесен и крахмал, представляющий собой смесь полисахаридов, основным компонентом которой является амилоза и амилопектин. Посредством определенных химических обработок из крахмала получен новый носитель - губчатый крахмал, обладающий повышенной устойчивостью к ферментам, гидролизующим полисахариды.
Агароза - широко используется в качестве носителя для иммобилизации ферментов, однако стоимость ее довольно высока, что заставляет разрабатывать различные ее модификации с целью получения легко регенерируемых форм, которые в результате этого могли бы использоваться повторно. Гели, приготавливаемые на основе агарозы, выпускаются различными зарубежными фирмами и некоторые широко известны и у нас в стране, например "сефароза".
Агар - природный полисахарид, выделяемый из клеточных стенок некоторых морских водорослей. Точный состав его не известен, но установлено, что он содержит, по крайней мере, два полисахарида: агарозу и агаропектин. Преимуществом агара является его низкая стоимость и нетоксичность. Некоторые производные агара отличаются высокой механической прочностью и устойчивостью в щелочной среде, что явилось основанием рассматривать данный носитель почти идеальным.
Другими полисахаридами, получаемыми из морских водорослей, являются альгиновые кислоты и их соли, которые после некоторой модификации применяются для иммобилизации ферментов, клеток и клеточных органелл.
Гепарин - кислый полисахарид, успешно применяемый для получения водорастворимых препаратов иммобилизованных ферментов, используемых в медицине.
Синтетические полимерные носители
Огромное разнообразие синтетических полимеров обеспечивает их широкое использование в качестве носителей для иммобилизации ферментов. Синтетические полимеры используются для иммобилизации ферментов различными способами, а также для получения гелей и микрокапсул.
Полимеры на основе стирола
Полимеры этого типа являются основой для изготовления инообменных материалов, а также для изготовления микропористых и макропористых материалов, используемых в сорбционной иммобилизации.
Полимеры на основе производных акриловой кислоты
Одним из производных акриловой кислоты, широко применяемым в качестве носителя, является акриламид. Весьма широко применяется метод иммобилизации ферментов и клеток путем включения их в полиакриламидный гель (ПААГ). При этом процентное содержание полимера определяет пористость и жесткость геля. Некоторыми фирмами выпускаются носители смешанного типа, изготавливаемые па основе ПААГ и агарозы.
Полиамидные носители
Это группа различных полимеров с повторяющейся амидной группировкой. Главным достоинством носителей этого типа является то, что они могут быть созданы в различной физической форме: в виде гранул, порошков, волокон, мембран, трубок и т. п. Широкое применение таких носителей, особенно для медицинских целей, обусловлено и биологической инертностью, и стойкостью к воздействию биологических факторов.
В Европе для приготовления полусинтетического пенициллина используется на одном из этапов 6-амино-пенициллиновая кислота, получаемая с помощью иммобилизованного фермента пенициллин-ацилазы. В год производится примерно 3500 т этой кислоты, а для этого требуется произвести около 30 т указанного фермента.
Иммобилизованная глюкозоизомераза используется в США, Японии и Европе для промышленного производства концентрированного фруктозного сиропа путем частичной изомеризации глюкозы, получаемой из крахмала. Миллионы тонн такого сиропа ежегодно выпускаются с помощью этого фермента, который в настоящее время является наиболее широко применяемым из всех иммобилизованных ферментов.
Промышленные и коммерческие успехи этого процесса определяются следующими факторами: глюкоза, получаемая из крахмала, относительно дешевая; фруктоза - более сладкая, чем глюкоза; концентрированный фруктозный сироп содержит примерно одинаковые количества глюкозы и фруктозы, а по сладости подобен сахарозе.
Другой важной областью применения иммобилизованных ферментов является производство аминокислот с помощью аминоацилазы. Колонки с амино-ацилазой используются в Японии для производства сотен килограммов L-метионина, L-фенилаланина, L-триптофана и L-валина. Ферментно-полимерные коньюгаты широко используются в аналитической и клинической химии. Иммобилизованные на колонках ферменты могут использоваться повторно в качестве специфических катализаторов при определении различных субстратов. Например, разработаны ферментные электроды для потенциометрических и амперометрических определений таких веществ, как мочевина, аминокислоты, глюкоза, спирт и молочная кислота.
Электрод представляет собой электрохимический сенсор, находящийся в тесном контакте с тонкой проницаемой ферментной мембраной, способной специфически реагировать с какими-либо конкретными субстратами. Включенные в мембрану ферменты

продуцируют кислород, ионы водорода, ионы аммония, двуокись углерода или другие небольшие молекулы (в зависимости от осуществляемой реакции), которые затем легко детектируются специфическим сенсором. Выраженность ответа указывает на концентрацию определяемого вещества.
Применение ферментной технологии в существующих в настоящее время процессах (таких, как пивоварение, обработка пищевых продуктов, фармакология, химическая промышленность и т. п.) имеет огромные перспективы, однако до полной реализации ее еще весьма далеко.
Если говорить о будущем, то кажется вполне обоснованным ожидать, что производство и применение ферментов будут постоянно расширяться. Аргументацией этому является растущая в мире обеспокоенность в отношении загрязнения окружающей среды, истощения ряда ресурсов, в частности энергетических (рост цен на нефть и другие виды сырья). Все это стимулирует развитие новых направлений исследований, и практически не возникает сомнений, что ферменты в решении указанных проблем будут играть важную роль.
Наконец, несколько слов о так называемых иммобилизованных микробных клетках, которые получают все большее распространение и характеризуются снижением расхода времени и дорогих этапов очистки. Иммобилизация клеток достигается аналогичными методами, что и свободных ферментов. Огромным преимуществом иммобилизованных клеточных систем является замена ими сложных ферментационных процессов, таких, как получение вторичных продуктов микробного метаболизма (производство синтетических антибиотиков), в постоянно контролируемых химических процессах с использованием ферментных электродов, водных анализах и обработках отходов, непрерывных солодовых процессах, азотфиксации, синтезе стероидов и других медицинских продуктов.

Клеточная инженерия
Новый этап биотехнологии, интенсивно развивающийся в настоящее время, обусловил появление совершенно новых нетрадиционных объектов - культивируемых тканей и клеток высших многоклеточных организмов, животных и растений, а также микроорганизмов, создаваемых методами генетической инженерии. В отличие от микроорганизмов культуры клеток высших организмов являются сравнительно новыми объектами, использование которых позволяет наладить производство ценных биологически активных веществ, вакцин и моноклональных антител.
Идея о возможности культивирования клеток вне организма впервые была высказана в конце прошлого столетия, но первые культуры клеток были получены в начале нашего века, и ими явились, как ни странно, клетки животных, а не растений. А культивирование растительных клеток на искусственных питательных средах долгое время не удавалось. И лишь в 30-е годы были достигнуты первые успехи в этой области, которые и обеспечили бурный расцвет данного направления.
Развитие метода культуры клеток растений приходится на 70-е годы, когда были разработаны методические приемы получения изолированных протопластов растительных клеток, а также метода гибридизации соматических клеток растений.
Культуры каллусных клеток
Основным типом культивируемых растительных клеток является каллусная, значительно реже культивируют клетки опухолевых тканей растений. Культуры опухолевых клеток при глубинном и поверхностном выращивании внешне и по морфологии клеток мало отличаются от культур каллусных клеток. Главным отличием опухолевых клеток является их гормональная независимость, что обеспечивает им рост на питательных средах без добавок фитогормонов или их аналогов. Кроме того, опухолевые клетки лишены способности давать начало организованным структурам, таким, как корни или побеги в процессе органогенеза. Каллусные клетки в культуре могут спонтанно приобретать гормононезависимость, природа которой может быть следствием мутации или результатом экспрессии генов, определяющих независимость клетки от гормонов.
Каллусная клетка, при делении которой возникает каллусная ткань или каллус, представляет один из типов клеточной дифференциации, свойственной высшему растению. В исключительных ситуациях у нормального растения может возникать каллусная ткань (обычно это случается при травмах), которая функционирует непродолжительное время, защищая растение в участке повреждения и накапливая питательные вещества для регенерационного процесса.
Для получения культивируемых каллусных клеток кусочки (фрагменты) тканей различных органов высших растений (экспланты) помещают на искусственную питательную среду в пробирках, колбах или чашках Петри, строго соблюдая правила стерильности.
Особенности дедифференцирования (т. е. раздифференцировки) клеток экспланта и процесса каллусогенеза (т. е. образования каллуса) зависят от особенностей взятых для этого тканей. Клетки специализированных тканей растения (запасающей паренхимы, корня и стебля, мезофила листа и т. п.) на питательной среде, содержащей источники углерода, минеральные соли, витамины и вещества гормонального типа, должны дедифференцироваться, т. е. потерять структуры, характерные для их специфических функций, которые они выполняют в растении, и вернуться к состоянию активно делящихся клеток.
Во всех случаях образование каллуса связано с травматическим воздействием, хотя каллусовые клетки могут возникать и в результате пролиферации внутренних тканей экспланта без связи с поверхностью среза. В настоящее время техника культивирования растительных тканей настолько совершенна, что позволяет получить длительно перевиваемую каллусную культуру из любых живых тканей интактного растения.

<< Предыдущая

стр. 3
(из 4 стр.)

ОГЛАВЛЕНИЕ

Следующая >>