<< Предыдущая

стр. 4
(из 4 стр.)

ОГЛАВЛЕНИЕ

Основными компонентами питательных сред для культуры тканей и клеток растений являются минеральные соли (макро- и микроэлементы), источник углерода (обычно сахароза или глюкоза), витамины и регуляторы роста. Иногда возникает необходимость добавления в среду различных комплексных соединений (таких, как гидролизат казеина, смесь аминокислот, дрожжевой экстракт, различного рода растительные экстракты и т. п.). Как правило, при работе с новым объектом приходится эмпирическим путем подбирать оптимальные составы используемых питательных сред.
Каллусная ткань, выращиваемая поверхностным способом, представляет собой аморфную массу, не имеющую определенной анатомической структуры, цвет которой может быть белым, желтоватым, зеленым, красным. По консистенции каллусные ткани также могут существенно различаться.
Химический состав каллусной ткани и ткани органа, из которого она получена, как правило, различается. Каллусные ткани, выращиваемые поверхностным способом, часто применяются для поддержания в растущем состоянии коллекций различных штаммов, линий, мутантов; из них получают суспензии клеток для культивирования в жидкой питательной среде, а также для регенерации растений.
Культуры клеток растений, выращиваемые в жидкой питательной среде, обычно называют суспензионными культурами, хотя этот термин, строго научно говоря, не отражает поведение клеток при таком способе культивирования.
Отдельные клетки, а также небольшие их группы или достаточно крупные агрегаты (несколько десятков клеток) выращиваются во взвешенном состоянии в жидкой среде при использовании различных аппаратов и методов поддержания их в таком состоянии. Начальный момент при получении суспензионных культур клеток в известной степени является событием случайным, поскольку только те клетки, которые в силу каких-то причин оказались способными к перестройке метаболизма и эффективному размножению в данных конкретных условиях, дают начало "хорошим" линиям. Важной особенностью клеток таких линий является их высокая степень дезагрегации (не более 5-10 клеток в скоплении агрегате), морфологическая однородность (небольшие размеры, сферическая или овальная форма, плотная цитоплазма), а также отсутствие трахеиподобных элементов.
Культивирование клеток растений в жидкой среде имеет ряд преимуществ перед выращиванием поверхностным способом каллусных культур. В условиях жидкого культивирования значительно легче влиять на метаболизм и рост клеточных популяций различного рода экзогенными факторами. Суспензионные культуры намного удобнее для биохимических и молекулярно-биологических экспериментов - изучения индукции ферментов, процессов экспрессии генов, изолирования и характеристик получаемых мутантов и т. п.
Клетки для суспензионных культур получают из каллусных тканей, помещая последние в жидкие питательные среды и подвергая их перемешиванию с помощью разнообразных качалок или встряхивателей. Суспензионную культуру можно получить и из растительных тканей, однако это более трудоемкий путь, требующий большего времени. Клетки экспланта при этом способе должны сначала образовать первичный каллус, и лишь после попадания возникших на поверхности каллусных клеток в жидкую среду и их размножения там они дадут начало линии клеток, способных расти в виде суспензии.
Для глубинного культивирования (суспензионные культуры) растительных клеток применяют приемы, используемые в микробиологии. Это и выращивание в замкнутых или открытых системах, при периодическом или непрерывном режимах, однако наиболее изученным и наиболее распространенным способом глубинного культивирования суспензии растительных клеток пока еще остается закрытая периодическая система с использованием ферменторов с механическими мешалками или с аэрацией восходящими воздушными потоками. При указанном способе выращивания рост клеточной популяции характеризуется показателями, довольно близко напоминающими таковые при аналогичном культивировании микробных клеток, т. е. выделяют фазу задержанного роста (лаг-фазу), экспоненциальную фазу, фазу замедленного роста, стационарную и фазу отмирания или деградации клеток. Продолжительность фаз зависит от ряда факторов, связанных как с особенностями выращиваемых объектов, так и составом среды и некоторыми внешними воздействиями.
Генетические изменения (мутации), возникающие в культивируемых клетках, процессы адаптивной селекции, идущие в популяции, приводят к появлению из первичной каллусной ткани линий клеток, различающихся генетически и фенотипически. Это позволяет создавать линии клеток, сохраняющих биосинтетические процессы, присущие исходному растению, а также линии клеток, синтезирующих принципиально новые вещества.
В культурах клеток обнаруживаются традиционные для растений вещества, а также необычные соединения: алкалоиды, гликозиды, полисахариды, эфирные масла, пигменты и пр. Использование растительных клеток для производства ферментных препаратов позволяет получать разнообразные ценные продукты из натуральных или синтетических предшественников. Однако медленный рост, длительное поддержание стерильных условий, чувствительность к механическим повреждениям и ряд других менее существенных недостатков ограничивают применение суспензионных культур растительных клеток в промышленных масштабах. Кроме того, во многих случаях содержание требуемого продукта в суспензионных культурах клеток растений довольно низкое, что также предстоит преодолеть биотехнологам, занимающимся культивированием данных объектов.
Для клональной селекции мутантных, гибридных или трансформированных клеток используются методы выращивания изолированных (отдельных) клеток, которые получаются путем выделения их из суспензий с помощью микроманипуляторов либо посредством разведении, а также из регенерированных протопластов.
Получение протопластов
Растительные протопласты - это ограниченные мембраной цитоплазматические образования, обладающие внутриклеточными органеллами и характеризующиеся структурной целостностью и способностью осуществлять активный метаболизм, а также реакции биосинтеза и трансформации энергии.
Впервые протопласты растительных клеток были получены при изучении плазмолиза (в 1892 г.) в клетках водного растения - телореза. Способ получения был весьма простым (если не сказать примитивным), но тем не менее с его помощью они были получены, а это главное, Тонкая полоска ткани растения видерживалась сначала в 0,1 М растворе сахарозы до тех пор, пока протопласт не "сожмется" и не отойдет от клеточных стенок, затем бритвой делался разрез полоски и протопласты высвобождались в среду. Такого рода методические приемы выделения протопластов получили название механических. Подобные методы имеют определенные ограничения: 1) с помощью их можно получить только небольшое количество протопластов; 2) можно использовать только те ткани, в клетках которых при данном способе может иметь место выраженный плазмолиз; 3) из зрелой ткани таким методом протопласты получаются с большим трудом; 4) метод довольно длительный и трудоемкий.
Принципиально отличающимся методом является ферментативный способ получения протопластов, при котором клеточная стенка удаляется с помощью ферментов. Таким методом уже в 1919 г. были получены протопласты клеток грибов в результате обработки их клеточных стенок желудочным соком улитки. В микробиологических экспериментах протопласты получались путем разрушения клеточных стенок бактерий лизоцимом. Изолирование протопластов растительных клеток с использованием ферментных препаратов было осуществлено в I960 г. (E.Cocking). По сравнению с механическими способами ферментативные методы получения протопластов имеют определенные преимущества: 1) можно одновременно получить большое количество протопластов; 2) формирующиеся протопласты не подвергаются сильному осмотическому сжатию; 3) клетки остаются менее поврежденными: 4) метод сравнительно быстрый.
Для удаления клеточной стенки при получении растительных протопластов используются ферментные препараты трех типов -целлюлазы, гемицеллюлазы и пектиназы. Действие этих ферментов состоит в деструкции основных компонентов клеточной стенки, обеспечивающих ее механическую прочность (ригидность). У растительных клеток этими компонентами являются целлюлоза, гемицеллюлоза и пектиновые вещества, которые находятся в клеточной стенке в различных соотношениях. Поэтому комбинации ферментных препаратов и их количественные соотношения должны эмпирически подбираться для кождого конкретного случая (т.е. в зависимости от вида растения, его возраста и органа, из которого берется материал для получения протопластов).
Иными словами, оптимальные условия для получения протопластов растительных клеток весьма индивидуальны для различных тканей и в каждом случае необходима предварительная работа по подбору состава ферментов, их концентраций и времени обработки. Формирующиеся протопласты должны находиться в контакте с ферментами минимальное время, после чего их необходимо тщательно отмыть. Ферменты, естественно, должны быть стерильными (стерилизация производится, как правило, путем фильтрования через бактериальные фильтры). Важным фактором является подбор осмотического стабилизатора.
Кроме осмотических свойств среды должны быть подобраны и другие условия. Например, протопласты чаще всего получают в темноте или при слабом освещении. Температурные условия могут варьировать в довольно широких пределах; стабильности протопластов в определенной степени способствуют высокие концентрации двухвалентных ионов, воздействующих на мембранные системы клетки.

Культивирование протопластов
Для культивирования протопластов используются два методических приема: инкубирование в каплях жидкой среды и помещение в агаровый слой. Естественно, что каждый из них имеет свои преимущества и свои недостатки.
В первом случае обеспечивается хороший обмен газами через воздушную фазу и легкая диффузия в раствор выделяемых продуктов обмена. Помимо этого, к растущим протопластам можно легко добавлять свежую питательную среду в желаемых концентрациях. Однако при этом способе протопласты имеют тенденцию агрегировать в центре капли, что препятствует наблюдению за судьбой индивидуальных колоний протопластов.
В соответствии со вторым методом определенный объем взвеси протопластов в жидкой среде добавляется к равному объему 1%-ной расплавленной и охлажденной агаризованной среды того же состава. После уплотнения (затвердевания) среды протопласты оказываются разобщенными друг от друга и фиксированными в одном положении, что обеспечивает наблюдение за развитием индивидуальных протопластов -формирование клеточной стенки, деление клеток и дальнейшие превращения. Недостатком метода является возможность механического повреждения протопластов при смешивании с агаром, а также температурные воздействия расплавленной среды при ее недостаточном охлаждении.
Само собой разумеется, что существуют различные модификации совершенствования описанных выше методов культивирования протопластов, изложение которых заняло бы много времени.
Удобным методом является культивирование протопластов в малом объеме жидкой питательной среды (до 1 мкл), метод получил название микроизоляции отдельных протопластов.
Очень важной проблемой клеточной инженерии растительных организмов является регенерация протопластов. Синтез клеточной стенки у образовавшихся протопластов практически начинается сразу после удаления раствора ферментов, вызвавших ее деструкцию, что можно относительно легко наблюдать с помощью флюоресцентного микроскопа.
Если регенерация клеточных стенок - процесс достаточно распространенный у протопластов, то добиться деления сформировавшихся из протопластов клеток значительно труднее, а еще труднее получение из них целых растений.
Возможность регенерации растений из протопластов является свидетельством их тотипотентности, как это в свое время было продемонстрировано для растительных клеток (P.Steward, 1970). Регенерация растений осуществляется либо посредством эмбриогенеза, либо в процессе развития каллуса с последующей индукцией морфогенеза, посредством подбора оптимальных уровней гормонов, стимулирующих соответствующие этапы эмбриогенеза или морфогенетического процесса. Короче говоря, имеется достаточно обширный арсенал методов культивирования клеток in vitro, с помощью которых можно с успехом выращивать протопласты и получать из них целые растения, что указывает на тотипотентность многих протопластов.


Слияние протопластов
Изолированные протопласты за тот короткий промежуток времени, пока они не образуют клеточную стенку, могут сливаться друг с другом. Такое слияние может быть спонтанным и происходит чаще, если используются протопласты, полученные из молодых тканей или из суспензионных культур клеток. Однако этот процесс может быть стимулирован путем добавления определенных веществ, что позволяет осуществить слияние не только протопластов одного вида, но и гетерологичных. Таким способом удалось даже получить регенерированное растение после слияния протопластов растения табака двух видов.
Довольно эффективным индуцирующим слиянием протопластов агентом оказался полиэтилен гликоль (ПЭГ), обеспечивающий сильную адгезию протопластов. С его помощью были получены гибриды протопластов растений и животных клеток, протопласты растений и водорослей. Недостатком данной техники является то, что с ее помощью не удается получить большое количество слившихся протопластов за один прием. Методы слияния протопластов довольно существенно различаются, но конечный результат их одинаков, вплоть до слияния с помощью индукции электрическими импульсами. При всех методах на первом этапе происходит агрегация протопластов вследствие, как полагают, изменений их поверхностного потенциала. Последующее воздействие индукторов слияния сводится к определенным изменениям структуры мембран, увеличивающим их текучесть. Электронно-микроскопическое исследование с использованием метода замораживания-травления свидетельствует о том, что слияние мембран осуществляется в местах, свободных от внутримембранных образований (частиц). Такие участки имеют липидную природу и возникают, по-видимому, в результате фазового разделения.
Слияние, индуцируемое электрическими импульсами, возникает, вероятнее всего, в результате диэлектрического разрушения соприкасающихся мембран протопластов. Вокруг возникающей " дырки" возможен обмен молекулами липидов с образованием липидных мостиков, что в конечном счете приводит к слиянию мембран, поскольку развивается энергетически более выгодное состояние, нежели наличие двух поврежденных мембран. Процессы, сопровождающиеся обменом липидов, являются следствием особенностей жидкостно-мозаичной структуры клеточных мембран и могут быть связаны с их текучестью.


Гибридизация соматических клеток
Разработка методов индуцированного слияния протопластов, а также развитие техники культивировании растительных клеток in vitro, обеспечивающей возможность получения изолированных протопластов, их выращивания с образованием каллуса и в последующем целого растения, обеспечила формирование нового весьма перспективного метода гибридизации растений, получившего название соматической гибридизации. Сущность данного приема состоит в том, что в качестве гибридизуемых клеток используют не гаметы (репродукционные клетки), а клетки тела растений (соматические), из которых получаются протопласты. Слияние протопластов обеспечивает объединение не только клеточных геномов, но и двух различных цитоплазм. В большинстве описанных (известных) случаев слияние протопластов высших растений приводит к образованию либо гибрида, либо цибрида. Цибридное растение содержит цитоплазму обоих партнеров, а ядро - одного.
Важным моментом при индуцированном слиянии гетерологичных (неродственных) протопластов является наличие подходящего селективного маркера, позволяющего идентифицировать нужный продукт слияния, поскольку индуктор в своем воздействии неспецифичен и способствует агрегации и слиянию протопластов как одинаковых, так и гетерологичных видов. Одним из таких маркеров могут быть пластиды и, в частности, хлоропласты. Конечно, помимо пластид можно использовать (и, по-видимому, с не меньшим успехом) биохимические или генетические маркеры: например, изоэнзимный состав, особенности нуклеиновых кислот, устойчивость к определенным веществам, количество хромосом или кариотипы клеток.
Протопласты являются весьма лабильными образованиями и могут служить объектами для введения в клетку чужеродных материалов не только путем соматической гибридизации за счет слияния протопластов, но и посредством переноса в них изолированных ДНК или органелл других клеток. Удалось трансплантировать ядра, хлоропласты, что позволяет рассматривать данный прием в качестве достаточно перспективного для целей клеточной инженерии. Таким образом, в настоящее время уже существуют методы, позволяющие осуществлять

конструирование клеток растений с новыми свойствами с последующим получением из них не только клеточных систем, но и целых растений, соответствующих насущным потребностям человека.
Литература Основная
Елинов Н. П. Основы биотехнологии. СПБ: Наука, 1995.
Бекер М. Е., Лиепиньш Г. К., Райнулис Е. П. Биотехнология. М.: Агропромиздат,
1990.
Серия «биотехнология»: в 8 кн. / Под ред. Н. С. Егорова и В. Д. Самуилова. М: Высш. Шк., 1987-1988.
Сассон А. Биотехнология: свершения и надежды. М.: Мир, 1987.
Сельскохозяйственная биотехнология: векторные системы молекулярного клонирования. М.: Агропромиздат, 1991.
ГликБ., ПастернакДж. Молекулярная биотехнология. М.: Мир, 2002.
Дополнительная
Сб. «Биотехнология» / Под ред. А. А. Баева М.: Наука, 1984.
Овчинников Ю. А. Биоорганическая химия. М.: Просвещение, 1987.
Дебабов В. Г., Лившиц В. А. Современные методы создания штаммов промышленных микроорганизмов. 1987.
Бутенко Р. Г. и др. Клеточная инженерия. 1987.
Гриневич А. Г., Босенко А. М. Техническая микробиология. Мн.: Выш. шк. 1986.
Грачева И. М. Технология ферментных препаратов. М.: Агропромиздат, 1987.
Березин И. В. и др. Инженерная биотехнология. 1987.
Быков В. А. и др. Микробиологическое производство биологически активных веществ и препаратов. 1987.
Manual of Industrial Microbiology and Biotechnology // Ed. In chief A.L.Demain, J.E.Davies.-ASM.Washington, DC,. 1999.

<< Предыдущая

стр. 4
(из 4 стр.)

ОГЛАВЛЕНИЕ