<< Предыдущая

стр. 2
(из 3 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

Величины , и , входящие в формулу для определения , являются переменными. Следовательно, угол давления также является переменной величиной и его текущие значения i не должны превосходить определенный допустимый угол давления
Ji < [J].
Ранее было показано, что отрезок BD (рис. 4) изображает в масштабе mS передаточную функцию скорости точки В . Перпендикуляр к BD, проведенный через конец этого отрезка (точка D), составляет с прямой, проходящей через точку D и центр вращения кулачка О1, угол давления J. Следовательно, если известно положение оси вращения кулачка, не имея профиля кулачка, можно определить угол давления в различных точках i, построив для них отрезки, изображающие , соответствующие положениям толкателя, определяемым перемещениями (рис. 5 а, б) [1,2,5].
При проектировании механизма, когда положение оси вращения неизвестно, требуется выбрать его таким образом, чтобы любое из текущих значений Ji не превышало допустимых значений [J]. Для этого следует построить зависимость и в каждой позиции провести через конец отрезка кинематической передаточной функции скорости VqBi луч под углом [J] к вектору скорости в этой точке. Каждый луч удовлетворяет равенству J = [J] и ограничивает заштрихованную область допустимых решений (ОДР), в которой выполняется условие Ji [J] для этого положения (рис. 5г). Центр вращения кулачка следует поместить в ОДР, общую для всех положений. Такое решение обеспечит выполнение условия Ji < [J] для полного цикла работы механизма.
Очевидно, что для механизма с поступательно перемещающимся толкателем, максимальные углы давления, как правило соответствуют характерным точкам фазового портрета , в которых текущие значения кинематической передаточной функции скорости принимают максимальные по абсолютной величине значения (рис. 5в). В общем случае лучи, проведенные касательно к фазовому портрету под углом , ограничивают ОДР, а точка пересечения лучей может быть выбрана центром вращения кулачка минимальных размеров.
Рис 5
Для механизма с качающимся толкателем целесообразно сделать аналогичные построения.
Такая геометрическая интерпретация ограничения по углу давления позволяет получить аналитические выражения для определения основных размеров механизма - , (или w). Для этого нужно построить по вычисленным значениям функции перемещения толкателя и передаточной функции скорости кривую : при поступательно движущемся толкателе в прямоугольной системе координат с началом в точке B0 на начальной окружности кулачка (рис 6б), при вращающемся толкателе - в полярной системе координат с началом в точке О2 на оси вращения толкателя (рис 6в). Текущие значения перемещения толкателя откладываются по линии перемещения центра ролика (на рис. 6б - по оси , на рис. 6в - по дуге радиуса 2), а текущие значения передаточной функции скорости соответственно перпендикулярно оси и - вдоль осевой линии толкателя. При построении принято [1,2], что передаточная функция скорости при удалении толкателя положительна, при сближении - отрицательна, т.е. вектор скорости точки В, будучи повернут на 90° в направлении вращения кулачка, совпадает с направлением отрезка кинематической передаточной функции скорости на фазовой плоскости.
Для механизма с качающимся толкателем перемещениям и (рис. 6а) соответствуют углы поворота толкателя (рис. 6в):
и
Из треугольника O2kn в котором известны длины двух сторон: , и угол между ними , определяются расстояние между точками k и n по теореме косинусов и угол d:

Рис. 6


В треугольнике О1kn определяются углы и сторона О1k по теореме синусов:
;
;
;

Межосевое расстояние определяется из треугольника O1kO2 по теореме косинусов:
(16)
Угол между межосевой линией и ближним положением толкателя определяется из треугольника O1kO2 по теореме синусов:
(17)
Радиус начальной окружности кулачка определяется из треугольника O1B0O2 по теореме косинусов:
(18)
Расчетные соотношения для определения размеров кулачкового механизма с поступательно перемещающимся толкателем, получаемые с использованием рис. 6б имеют вид:


Смещение оси толкателя относительно оси вращения кулачка
(19)
Координата ближней точки толкателя
(20)
Радиус начальной окружности кулачка
(21)
При жестких ограничениях на габаритные размеры механизма принимают во внимание, что опасность заклинивания толкателя при силовом замыкании кинематической пары характерна только для фазы удаления, так как на фазе сближения толкатель движется под действием силы упругости пружины. Это позволяет расширить границы ОДР для положения оси вращения кулачка O1 с учетом допустимого угла давления, когда при работе механизма реверсивное движение кулачка не предусмотрено (кулачок вращается только по часовой стрелке либо только против). В таком случае на фазе сближения ограничение по углу давления не вводится или допустимый угол давления на фазе сближения принимается значительно большим, чем на фазе удаления.
На рис. 7 показано несколько ОДР для механизма с поступательно движущимся толкателем:
ОДР - направление вращения кулачка реверсивное, допустимые углы давления при удалении и сближении одинаковы;


Рис. 7

ОДР1 - направление вращения кулачка реверсивное, значения допустимых углов давления на фазе удаления и сближения различны;
ОДР2 - кулачок вращается только против часовой стрелки, предельное значение угла давления при сближении не регламентировано;
ОДР3 - кулачок вращается только по часовой стрелке, предельное значение угла давления при сближении не регламентировано;
ОДР4 - вращение кулачка реверсивное, смещение направляющей относительно оси вращения кулачка не допускается (= 0).
Требования, предъявляемые к работе кулачкового механизма, определяют соответствующую ОДР, а следовательно, габаритные размеры, , (или w), разные для каждого частного случая, и должны быть отражены при задании исходных данных для расчета на ЭВМ. Необходимо указать сведения о направлении вращения кулачка, допустимом угле давления и относительном расположении осей вращения кулачка и толкателя.

5. Определение координат профиля кулачка
Координаты точек профиля кулачка в программе для ЭВМ рассчитываются в полярной rO1y и декартовой ХO1Y системах координат. Начало координат совпадает с центром вращения кулачка, полярная ось или ось абсцисс проходит через начальную точку В0 на профиле кулачка.
Расчетные формулы для определения параметров кулачка с вращающимся толкателем получаются из схемы, изображенной на рис. 8. Полярные координаты - текущее значение радиуса центрового профиля кулачка и угол , определяющий его положение относительно оси:
(22)
, (23)
где - межосевое расстояние;
2 - длина толкателя;
; (24)
- текущее значение угла поворота толкателя;
- текущее значение обобщенной координаты;
; (25)
. (26)


Рис.8
Координаты точки В профиля кулачка в декартовой системе

. (27)
Текущие значения углов давления
(28)
Координаты центрового профиля кулачка с поступательно перемещающимся толкателем определяются по формулам, выведенным по расчетной схеме, показанной на рис. 9.


Рис.9
Текущее значение радиуса центрового профиля и угол , определяющий его положение относительно полярной оси определяются по формулам :
(29)
, (30)
где
- координата ближней точки толкателя;
i - текущее значение перемещения очки В толкателя,
- внеосность толкателя
- текущее значение угла поворота кулачка;

. (31)
Наибольший радиус кулачка
(32)
где h - максимальное значение перемещения толкателя.
Координаты центрового профиля кулачка в декартовой системе координат
; (33)
. (34)
Текущие значения угла давления
(35)

6. Описание программы расчета кулачкового механизма на ЭВМ
В соответствии с изложенной выше методикой составлена программа QUL для расчета размеров кулачкового механизма и координат профиля кулачка на ЭВМ Программа позволяет выполнять проектирование механизмов с вращающимся и поступательно перемещающимся толкателем при любом направлении вращения кулачка. Блок-схема программы показана на рис. 10.




























Перечень исходных данных в порядке их ввода, обозначения и идентификаторы приводятся ниже:
1. Вариант задания на проект - ВАР
2. Ход толкателя, м h Н
3. Угол рабочего профиля кулачка, град j1P FIR
Число точек, задаваемых для описания графика
передаточной функции ускорения толкателя - N
5. Допустимый угол давления, град [J] UTD
Число точек разрыва передаточной функции
ускорения толкателя - NR
Длина коромыслового толкателя, м 2 L2
или внеосность толкателя , м Е
Идентификатор направления вращения кулачка - WR
Массив значений, описывающих график
передаточной функции ускорения АQ
10. Массив, содержащий номера точек разрыва - NAQ
и значения функции справа от точек разрыва АQR
Если в исходных данных задана длина коромыслового толкателя, то рассчитываются межосевое расстояние, минимальный радиус и координаты центра вращения кулачка, координаты центрового профиля кулачка в декартовых и полярных координатах, углы давления.
Если в исходных данных не задана длина толкателя (2= 0), то рассчитываются минимальный радиус кулачка, внеосность толкателя (если она не задана), координаты центрового профиля кулачка в декартовых и полярных координатах, углы давления для кулачкового механизма с поступательно перемещающимся толкателем.
Направление вращения кулачка задается идентификатором WR: при вращении по часовой стрелке WR=1, против - WR= -1, при реверсивном движении WR=0.
При вводе исходных данных заданный график ускорений должен быть достаточно точно описан массивом переменных (AQ). Количество элементов N этого массива выбирается целым числом, кратным значению угла рабочего профиля кулачка (FIR1), выраженного в градусах, а число элементов, описывающих функцию ускорения на фазах удаления, дальнего стояния и сближения - числами кратными значениям соответствующих углов , , . Выполнение указанных рекомендаций позволяет разместить элементы массива ускорений точно на границах фаз рабочего профиля кулачка.
Если график функции ускорения имеет точки разрыва, то функция в этих точках должна быть описана особо: кроме значения функции слева от точки разрыва (АQ(I)), входящего в массив (АQ) должен быть указан номер значения функции в массиве в точке разрыва - NАQ(j) и значение функции справа от точки разрыва - (АQR(j)). Значения функции ускорения справа от всех точек разрыва составляют массив (АQR) размерностью NR (NR - число точек разрыва). Например, график ускорений, показанный на рис. 3a, описывается следующим образом:
АQ(i): 35.0; 30.0; 25,0; -12,5; -15.0; -17.5; -20,0; 0,0; -17,5; -15,0:
-12,5; -10,0; 30,0; 35,0.
NAQ(J), AQR(J): 2; -10,0; 6; 0,0; 7; -20,0: 11; 25,0.
В таблице результатов вначале печатаются исходные данные, характерные параметры фазового портрета (FIK), (FIN), (VQK), (VQN) и значения минимальных габаритов механизма (R0), (E) или w (A). Затем для различных углов поворота кулачка (FI1). выводятся на печать массивы значений (АQ), (VQ), (S), координаты профиля кулачка в декартовых (, ) и полярных (PSI, R) координатах и текущие значения углов давления J (TET). Распечатка таблицы результатов приведена в табл. 6.

Проектирование кулачковых механизмов графическим методом
Проектирование ведется в последовательности, которая указана в разделе 1.
1. Построение кинематических диаграмм методом графического интегрирования.
Построение начинают с заданного графика кинематической передаточной функции ускорения (рис. 3а, 11а). По оси абсцисс откладывают фазовые углы j1У + j1Д + j1С = jР
Масштаб по оси j вычисляют по формуле м/рад ,
где j1P - угол рабочего профиля, град.,
b - база графиков, мм.
Максимальное значение ординаты графика на фазе удаления задают произвольно, а максимальное значение ординаты на фазе сближения вычисляют по условию равенства площадей из пропорции .
Методом графического интегрирования строят график кинематической передаточной функции скорости толкателя. Для этого на продолжении оси j1 графика выбирают произвольный отрезок интегрирования K1, делят ось абсцисс графика на интервалы, из середины каждого интервала восстанавливают перпендикуляр к оси j1 до пересечения с кривой ,
Таблица 6.

РЕЗУЛЬТАТЫ РАСЧЕТА КУЛАЧКОВОГО МЕХАНИЗМА С КАЧАЮЩИМСЯ ТОЛКАТЕЛЕМ
ВАРИАНТ А
ИСХОДНЫЕ ДАННЫЕ: Н=.020 FIR=130.0 WR=0 UTD=30.0 L2=.030
РЕЗУЛЬТАТЫ РАСЧЕТА: RO=.0533 A=.0716
FIK=30.0 VQK=.026 SK=.008
FIN=100 VQN=-.036 SN=.013
I
FI1
AQ
VQ
S
0
.0
15.000
.000
.000
1
10.0
13.000
.011
.000
2
20.0
10.000
.020
.004
3
30.0
3.000
.026
.008
4
40.0
-3.000
.026
.012
5
50.0
-10.000
.020
.016
6
60.0
-13.000
.011
.019
7
70.0
-15.000
.000
.020
8
80.0
.000
.000
.020
9
90.0
-25.000
-.022
.018
10
100.0
-10.000
-.036
.013
11
110.0
10.000
-.036
.007
12
120.0
25.000
-.022
.002
13
130.0
30.000
.000
.000

I
PSI
R
XB
YB
TET
0
0.
.0533
.0533
.0000
25.6664
1
10.4
.0542
.0533
-.0098
33.3188
2
21.4
.0568
.0529
-.0207
34.3708
3
32.3
.0607
.0513
-.0324
30.0000

<< Предыдущая

стр. 2
(из 3 стр.)

ОГЛАВЛЕНИЕ

Следующая >>