<< Предыдущая

стр. 4
(из 7 стр.)

ОГЛАВЛЕНИЕ

Следующая >>

То, что такое умножение структурных единиц должно было играть существенную роль в эволюции новых типов животных и растений, очевидно из струк­турных повторений у существующих организмов. Более того, многие структуры животных и растений, которые сейчас отличаются друг от друга, вполне мог­ли развиться из изначально одинаковых единиц. Счи­тается, например, что насекомые развились из су­ществ, напоминающих примитивных многоножек, имеющих ряд более или менее одинаковых сегментов, каждый из которых несет одну пару ногоподобных придатков. Из этих придатков на передних сегментах могли развиться ротовая часть и щупальца или усики, а из самих сегментов, слившихся воедино,— голова. В хвостовой части некоторые из придатков могли видо­измениться с образованием структур, предназначен­ных для спаривания и кладки яиц. В сегментах брюш­ной области придатки были подавлены, но в трех грудных сегментах они сохранились и развились в но­ги современного насекомого [173 Wigglesworth(1964).].
Такая дивергенция изначально сходных хреод мог­ла стать возможной, только если морфогенетические зародыши сегментов стали различаться по своей структуре; в противном случае все они продолжали бы связываться с помощью морфического резонанса с од­ними и теми же морфогенетическими полями. И даже у современных насекомых, если бы на ранних стадиях их развития не происходило такого расхождения сег­ментальных зачатков, нормальное различие между сегментами было бы утеряно. Действительно, это именно то, что, по-видимому, происходит у плодовой мушки дрозофилы в результате мутаций в удвоенном грудном генном комплексе: некоторые из них транс­формируют структуры третьего грудного сегмента в структуры второго, так что мушка имеет две пары кры­льев вместо одной (рис. 17); другие трансформируют брюшные сегменты в сегменты грудного типа, несу­щие ноги; а есть и такие, которые вызывают противоположный эффект, превращая грудные сегменты в сегменты брюшного типа [174 Lewis (1963, 1978).].

8.6. Влияние других видов
Те, кто практикует разведение животных и расте­ний, давно заметили, что культурные разновидности время от времени дают потомство, напоминающее их диких предков. Более того, когда скрещиваются две определенные культурные разновидности, потомство иногда имеет признаки не кого-либо из родителей, а, скорее, диких предков. Этот феномен называют обращением (реверсией), или атавизмом [175 См. главу «Реверсия, или атавизм» у Дарвина (1875).].
Подобным же образом в эволюции некоторые ти­пы морфологических отклонений можно рассматри­вать как реверсии путей развития более или менее отдаленных диких видов. Например, ненормальное образование двух пар крыльев в мутантах дрозофи­лы с «двойной грудью» {рис. 17) интерпретировалось как отбрасывание назад к типу развития, характер­ному для четырехкрылых предков этих мушек [176 Lewis (1978).]. Множество других примеров предполагаемого ата­визма можно найти в литературе по тератологии [177 Например, Penzig (1922). Недавно это обсужда­лось в Dostal (1967) и Riedl (1978).]. Конечно, такие интерпретации могут быть лишь спе­кулятивными, но они не обязательно далеки от исти­ны. Мутации или ненормальное окружение могли создать в эмбриональных тканях условия, сходные с теми, которые были у диких предков, с теми же морфогенетическими последствиями.
У большинства растений и животных лишь малая часть, быть может менее пяти процентов, хромосом­ной ДНК содержит гены, кодирующие белки данного организма. Функции огромного большинства молекул ДНК остаются неизвестными. Некоторые могут участ­вовать в контроле синтеза белка, некоторые — играть структурную роль в хромосомах, а некоторые могут состоять из «лишних» наследованных генов, которые более не проявляются (не экспрессируются). Было вы­сказано предположение, что если мутация — напри­мер, из-за перестановки в структуре хромосомы — приводит к экспрессии таких латентных генов, неожи­данно снова могут начать синтезироваться белки, характерные для далеких предков, в результате чего в некоторых случаях вновь появляются давно утерянные структуры [178 R. J. Britten в Dunkan and Weston-Smith (eds) (1977).].
В рамках гипотезы формативной причинности, если какое-либо из таких изменений являлось причи­ной того, что морфогенетический зародыш принимал структуру и вибрационную картину, сходные с теми, которые были у какого-либо вида этого рода, он подпа­дает под влияние морфогенетического поля вида, даже если он вымер миллионы лет назад. Более того, этот эффект необязательно ограничен родовыми типами. Если в результате мутации (или по какой-нибудь другой причине) структура зародыша в развивающемся орга­низме стала достаточно близкой к таковой у морфогене­тического зародыша любого другого вида, современного или вымершего, он будет «настроен» на хреоду, харак­терную для этого другого вида. И если клетки способны синтезировать соответствующие белки, тогда система фактически будет развиваться под его влиянием.
В ходе эволюции очень близкие структуры иногда появляются как бы совершенно независимо в линиях, состоящих в более или менее отдаленном родстве. Например, среди средиземноморских сухопутных ули­ток виды, относящиеся к хорошо различимым родам, определяемым по их гениталиям, имеют раковины поч­ти одинаковой формы и структуры; рода ископаемых аммонитов демонстрируют повторяющееся параллель­ное развитие раковин с килем и желобками, а подоб­ный или идентичный рисунок крыльев встречается в совершенно разных семействах бабочек [179 Rensch (1959).].
Если мутация привела к тому, что организм «на­строился» на хреоды других видов и, следовательно, в нем развиваются структуры, характерные для других видов, он вскоре будет уничтожен в ходе естествен­ного отбора, если эти структуры уменьшают его шансы на выживание. С другой стороны, если он будет «поощ­ряться» естественным отбором, доля таких организмов в популяции будет увеличиваться. Действительно, дав­ления отбора, которые способствовали увеличению, могут сильно напоминать те, которые способствовали начальной эволюции этого особого признака у других видов. А иногда структурное сходство может поддер­живаться даже просто само по себе, именно потому что оно позволяет организму копировать особей других видов. Таким образом, эволюционные параллелизмы могут часто зависеть как от «подбирания» одним видом морфогенетических полей другого, так и от параллель­ных давлений отбора.
С другой стороны, сходные давления отбора могут приводить также к конвергентной эволюции избыточ­ных подобных структур у различных видов посредст­вом модификации разных морфогенетических полей. Но в таких случаях, если структуры не сильно похожи друг на друга во внутренних деталях и по внешней форме, они вряд ли могут взаимодействовать через морфический резонанс.

8.7. Источник новых форм
Согласно гипотезе формативной причинности, морфический резонанс и генетическая наследствен­ность в совокупности объясняют повторение харак­терных путей морфогенеза в последовательных поко­лениях растений и животных. Более того, признаки, приобретенные в ответ на влияния окружающей сре­ды, могут стать наследуемыми в результате сочетания морфического резонанса и генетического отбора. Морфология организмов может изменяться вследст­вие подавления или повторения хреод; и некоторые поразительные примеры параллельной эволюции можно объяснить «переходом» хреод от одного вида к другому.
Однако ни повторение, модификация, добавление или вычитание, ни перестановка существующих морфогенетических полей не могут объяснить источник самих этих полей. Тем не менее в процессе эволюции должны были появляться совершенно новые морфические еди­ницы вместе со своими морфогенетическими полями: это поля органелл — основных типов клеток, тканей и органов, а также поля фундаментально различающихся типов низших и высших растений и животных.
Хотя генетические мутации и ненормальное окру­жение вполне могли предоставить случаи для первого появления новых биологических морфических единиц, формы их морфогенетических полей не могли быть пол­ностью определены ни энергетической причинностью, ни ранее существовавшими формативными причинами (раздел 5.1). Можно лишь высказывать догадки о том, появилось ли любое данное морфогенетическое поле внезапно, в виде большого «скачка», или более посте­пенно, в последовательности меньших «скачков». Но в любом случае новые формы, принимавшиеся в этих «скачках», не могут быть объяснены в рамках научного подхода через предшествующие причины.
Происхождение новых форм можно приписать ли­бо творческой активности силы, наполняющей собой природу и трансцендентной ей; либо творческому им­пульсу, присущему природе; либо слепому и бесцель­ному случаю. Но выбор между этими метафизически­ми возможностями никогда не мог быть сделан на основе какой-либо научной гипотезы, проверяемой опытным путем. Поэтому с точки зрения естественной науки вопрос об эволюционном творчестве можно лишь оставить открытым.
Глава 9
Движения и моторные поля
9.1. Введение
В предыдущих главах обсуждалась роль форма­тивной причинности в морфогенезе. В этой и двух последующих главах речь пойдет о роли формативной причинности в управлении движением.
Некоторые движения растений и животных явля­ются самопроизвольными (спонтанными); это означа­ет, что они происходят без какого-либо определенного стимула извне. Другие движения совершаются в ответ на стимул из среды. Конечно, организмы пассивно от­вечают на действие грубой физической силы: дерево может быть повалено ветром или животное может уне­сти сильный поток воды,— но многие отклики активны и не могут быть объяснены как результат грубого фи­зического или химического воздействия стимула на организм в целом: они выявляют чувствительность (сенситивность) организма к влияниям среды. Эта чув­ствительность обычно зависит от специализирован­ных рецепторов или органов чувств.
Физико-химическая основа возбуждения таких специализированных рецепторов стимулом со стороны среды была выяснена весьма подробно; основатель­но исследованы также физиология нервного импуль­са, функционирование мускулов и других моторных структур. Но еще очень мало известно об управлении и координации поведения.
В этой главе предполагается, что как формативная причинность организует морфогенез через вероятно­стные структуры полей, которые определенным обра­зом упорядочивают энергетически неопределенные процессы, так же она организует и движения и, следо­вательно, поведение. Подобие между морфогенезом и поведением сразу не очевидно, но его легче всего по­нять на примере растений и одноклеточных животных, таких как амеба, движения которых существенно морфогенетичны. Их мы и рассмотрим в первую очередь.

9.2. Движения растений
Обычно растения движутся путем роста [180 Классическое изложение см. У Дарвина (Darwin, 1880).]. Этот факт легче осознать, когда видишь их в ускоренной кино­съемке: ростки вытягиваются и изгибаются к свету; раз­ветвления корней устремляются вниз, в почву, а верхуш­ки усиков и ползучих стеблей выбрасывают в воздух широкие спирали, пока не соприкоснутся с твердой опо­рой и не обовьются вокруг нее [181 Darwin (1882).].
Рост и развитие растений происходят под контро­лем их морфогенетических полей, которые сообщают растениям их характерные формы. Но ориентация это­го роста в значительной степени определяется направ­ленными стимулами силы тяжести и света. Факторы окружения влияют также на тип развития: например, в тусклом свете растения становятся белесыми, их по­беги растут сравнительно быстро и становятся длинны­ми и тонкими, пока не достигнут более яркого света.
Гравитация «чувствуется» благодаря ее действию на зерна крахмала, которые скатываются вниз и накап­ливаются в нижних частях клеток [182 Audus (1979).]. Направление, отку­да приходит свет, обнаруживается путем дифференци­ального поглощения лучистой энергии на освещенной и теневой сторонах органов желтым пигментом каротеноидом [183 Curry (1968).]. Чувство «осязания», с помощью которого ползучие стебли и усики находят твердые опоры, может объясняться выделением простого химического веще­ства, этилена, с поверхности клеток при их механичес­кой стимуляции [184 Jaffe (1973).]. Изменение роста с ускоренного при недостатке света на нормальный зависит от поглощения света голубым белковым пигментом, называемым фитохромом [185 Siegelman (1968).].
Ответы на эти стимулы включают сложные физико-химические изменения в клетках и тканях, а в некото­рых случаях зависят от различий в распределении гор­монов, таких как ауксин. Однако эти реакции не могут быть объяснены с помощью одних только физико-химических изменений, но могут быть поняты лишь с привлечением общих морфогенетических полей рас­тений. Например, благодаря присущей им полярности растения производят на одном конце стебли, на дру­гом — корни. Направленный стимул гравитации руко­водит этим поляризованным развитием так, что стебли растут вверх, а корни вниз. Действие гравитационного поля на зерна крахмала в клетках и соответствующие изменения в распределении гормонов действительно являются причиной этих ориентированных движений роста, но не могут сами по себе объяснить существова­ние полярности; не объясняют они и тот факт, что глав­ные стебли и корни реагируют диаметрально противо­положным образом, а также различные особенности роста деревьев, трав, вьющихся и ползучих растений и особенности разветвления стебля и корневой системы различных видов. Все эти признаки зависят от морфо­генетических полей.
Несмотря на то что большая часть движений расте­ний происходит только в молодых растущих органах, некоторые структуры сохраняют способность двигать­ся даже тогда, когда они вполне созрели, например, цветы, которые открываются и закрываются каждый день, и листья, складывающиеся ночью. На эти движе­ния влияют интенсивность света и другие факторы среды; они находятся также под контролем «физиоло­гических часов» и продолжают происходить приблизи­тельно раз в сутки, даже если растения помещаются в неизменяемые условия [186 Bunning (1973).]. Листья или лепестки откры­ваются, потому что специализированные клетки в «шарнирной» (hinge) области у их основания разбуха­ют; и они закрываются, когда эти клетки теряют воду вследствие изменения проницаемости их мембран по отношению к неорганическим ионам [187 Satter (1979).]. Восстановление тургорного давления является активным процессом, требующим затрат энергии и сравнимым с ростом.
Помимо «сонных» движений листья некоторых растений движутся в течение дня в ответ на изменение положения солнца. Например, у голубиного гороха, Cajanus cajan, листочки, на которые падает солнце, ориентированы приблизительно параллельно солнеч­ным лучам, что минимизирует площадь поверхности, подверженной интенсивному тропическому излуче­нию. Но листья в тени ориентируются под прямыми углами к падающим лучам, тем самым улавливая мак­симальное количество света. Эти реакции зависят от направления и интенсивности света, падающего на специализированные узлы в листьях (листовые поду­шечки). В течение дня листья и листочки непрерывно приспосабливают свое положение к движению солнца по небу. Ночью они принимают свое вертикальное «спящее» положение: листовые подушечки чувстви­тельны к гравитации так же, как и к свету.


Рис. 23. Листья чувствительного растения, Mimosa pudica. Слева — не стимулированные; справа — стимулированные


У «чувствительного» растения, Mimosa pudica, лис­точки закрываются и листья смотрят вниз ночью, как и у многих других бобовых растений. Но эти движения быстро происходят также и в дневное время в ответ на механический стимул {рис. 23). Стимул вызывает распространение вниз по листу волны электрической деполяризации, подобной нервному импульсу; если стимул достаточно сильный, импульс распространяет­ся на другие листья, которые также свертываются [188 Bose (1926), Roblin (1979).]. По­добно этому, у растения венерина мухоловка, Dionaea muscipula, механическая стимуляция чувствительных волосков на поверхности листа вызывает движение электрического импульса к разбухшим «шарнирным» клеткам, которые быстро теряют воду; в результате лист захлопывается как ловушка вокруг несчастных насекомых, которые затем перевариваются [189 Bentrap (1979).].
Эти движения листьев и листочков в ответ на дейст­вие света, силы тяжести и механическую стимуляцию возможны потому, что специализированные клетки способны терять воду, а затем вырастать снова; следовательно, они сохранили упрощенный морфогенетический потенциал, тогда как у большинства других тканей он теряется, когда они созревают и перестают расти. Обратимые движения этих специализирован­ных структур можно рассматривать как предельные случаи морфогенеза, в которых изменения формы стали стереотипными и повторяющимися. Но их ква­зимеханистическая простота в эволюционном отно­шении является вторичной, а не первичной: она воз­никла из ранее существовавшей предпосылки, в которой чувствительность к стимулам среды связана с ростом и морфогенезом растения в целом.

9.3. Амебоидное движение
Амебы движутся с помощью объемного тока своей цитоплазмы в вырастающие выступы — псевдоподии. В норме они перемещаются по поверхности твердых объектов посредством непрерывного растягивания своих передних концов. Но если до псевдоподий до­тронуться или если они соприкасаются с теплом или концентрированными растворами химических ве­ществ, они перестают расти, вместо них вырастают другие, и тогда клетка меняет направление движения. Если новые псевдоподии снова встречают какие-либо потенциально опасные стимулы, они также останавли­ваются, и амеба уходит от них в другом направлении. Эта система «проб и ошибок» действует до тех пор, пока они не находят путь без препятствий или неблаго­приятных стимулов [190 Разные виды амеб отличаются от хорошо известного типа A.Proteus в деталях способа пере­ движения и реакций: так, А. Limax образует ма­ло псевдоподий и обычно движется вперед как одна удлиненная масса; A. Verrucosa движется медленно, сохраняя почти неизменную форму; A. Velata обычно выбрасывает в воду свободную псевдоподию, напоминающую щупальце. Тем не менее общие принципы передвижения остаются одинаковыми. Дальнейшие подробности и литературу можно найти у Дженнингса (Jennings, 1906).].



Рис. 24. Метод, с помощью которого плавающая амеба пере­ходит на твердую поверхность (согласно данным, приведенным в Jennings, 1906)


У свободно плавающих амеб, не испытывающих действия какого-либо особого направленного стимула, нет соответствующей ориентации роста; псевдоподии продолжают развиваться в разных направлениях, пока одна из них не соприкоснется с поверхностью, вдоль которой она может ползти {рис. 24).
Вытягивание псевдоподий происходит предполо­жительно под влиянием специфического поляризован­ного морфогенетического поля. Ориентация, в которой начинают формироваться новые псевдоподии, может в большой степени зависеть от случайных флуктуации внутри клетки; виртуальные псевдоподии, выдвинутые из тела клетки, затем актуализируются посредством ор­ганизации сократительных волокон и других структур в цитоплазме. Этот процесс продолжается до тех пор, пока развитие псевдоподий не подавляется стимулами из окружения или в результате конкуренции с псевдо­подиями, растущими в других направлениях.
Возможно, тот факт, что амебоидные движения за­висят от непрерывных морфогенетических процессов, засвидетельствован в самом названии Amoeba proteus в виде намека на мифическое морское божество, кото­рое непрерывно изменяло свой вид.
Амебы питаются, поглощая частицы еды, такие как бактерии, путем фагоцитоза: псевдоподии растут вокруг частицы, соприкасающейся с поверхностью клетки; мембраны псевдоподий сливаются, и частица оказывается заключенной внутри клетки и окружен­ной частью клеточной мембраны. Другие мембранные пузырьки (везикулы), содержащие пищеварительные ферменты, сливаются с фагоцитарной везикулой, и еда переваривается. Этот тип морфогенеза отличается от характерного для передвижения клетки и осуществля­ется предположительно под действием другого морфогенетического поля, ориентация которого зависит от контакта потенциальной питательной частицы с мемб­раной клетки. Частица, соприкасающаяся с мембра­ной, может рассматриваться как морфогенетический зародыш; конечной формой здесь является частица, поглощенная клеткой. Хреода фагоцитоза, приводящая к этой конечной форме, задается морфическим резо­нансом от всех подобных актов фагоцитоза, проис­ходивших в прошлом у тех же амеб.

9.4. Повторяющийся морфогенез специализированных структур
Движения большинства животных зависят от изме­нения формы, скорее, неких специализированных структур, нежели тела в целом.



Рис. 25. А — жгутиковое, Euglena gracilis (Raven et al., 1976); В — простейшее, Tetmhymena pyriformis (Mackinnon and Hawes, 1961)


Многие одноклеточные организмы приводятся в движение за счет биения хлыстоподобных выростов, именуемых жгутиками, или ресничками, тогда как форма остальной части клетки остается более или ме­нее неизменной (рис. 25). Эти подвижные органеллы содержат длинные трубчатые элементы, очень похо­жие на цитоплазматические микротрубочки; измене­ние формы белков, связанных с трубочками, порожда­ет силу сдвига, под действием которой сгибаются жгутики, или реснички [191 F.D.Warner в Roberts and Hyams (eds) (1979).].
У реснисчатых движения многих отдельных ресни­чек координируется таким образом, что волны биения проходят по поверхности клетки. У некоторых видов эта координация, по-видимому, зависит от механического воздействия ресничек на их соседей; а у других — от си­стемы возбуждения внутри клетки, вероятно связанной с фибриллами, соединяющими основания ресничек [192 Sleigh (1968).].
Если плывущее одноклеточное, например инфузо­рия (Paramecium), встречает неблагоприятный сти­мул, направление биения ресничек изменяется на противоположное: организм отплывает назад, а затем снова плывет вперед в другом направлении [193 Jennings (1906).]. Эта ре­акция избегания, возможно, запускается входом в клетку кальция или других ионов в результате изме­нения проницаемости мембраны, вызванного данным стимулом [194 Eckert (1972).].
Изменение формы бьющихся жгутиков, или ресни­чек, а также управление этим биением имеет такой стереотипный, повторяющийся характер, что кажется почти машиноподобным.
Эта квазимеханистическая специализация структу­ры и функции еще более продвинута у многоклеточных организмов, Целые клетки и группы клеток специали­зированы и проходят повторяющийся упрощенный морфогенез в своих циклах сокращения и релаксации; другие обладают специфической чувствительностью к свету, химическим веществам, давлению, вибрации или другим стимулам. А нервы, с их невероятно удли­ненными аксонами, специализированы для проведения электрических импульсов от одного места к другому, соединяя органы чувств и мускулы с нервной сетью или центральной нервной системой.

9.5. Нервные системы
Так же как биение отдельной реснички на поверх­ности одноклеточного животного координировано с та­ковым соседних одноклеточных с помощью определен­ных физических связей, сокращение индивидуальных клеток мускулов координировано с помощью опреде­ляющих импульсов, проходящих по нервам. Когда не­сколько соседних клеток активируются одним нервом, их можно побудить сократиться одновременно. А если активность нерва является частью системы управления высшего уровня, сокращение различных групп клеток может координироваться ритмично, как это проис­ходит с мускулом, который сохраняет напряжение в те­чение определенного периода времени. Далее, системы еще более высоких уровней контролируют повторяю­щиеся циклы сокращения различных мускулов, напри­мер в ногах животного, когда оно бежит. Таким образом, иерархически организованная деятельность нервной си­стемы позволяет осуществлять координацию по ступе­ням, что было бы невозможно, если бы поля, управляющие движениями организмов, действовали непосредст­венно на клетки мускулов.
Но хотя, с одной стороны, нервы функционируют детерминистским образом, передавая определенные импульсы типа «все или ничего» из одного места в дру­гое, с другой стороны — формативная причинность не могла бы управлять движениями животных через нервную систему, если бы деятельности нервов не был свойствен в то же время вероятностный характер. И это на самом деле так.


Рис. 26. Часть нервной клетки с множеством синапсов на по­верхности. На вставке крупным планом показан один синапс. Pre SM — пресинаптическая мембрана;
Post SM — постсинаптическая мембрана (Kristic, 1979)


Возбуждение нервных импульсов зависит от изме­нений проницаемости мембран нервных клеток для неорганических ионов, в частности натрия и калия. Эти изменения могут быть вызваны либо электричес­кой стимуляцией, либо специфическими химическими посредниками, или медиаторами (например, ацетилхолином), выделяемыми из нервных окончаний в синаптических узлах {рис. 26). Возбуждение нервов электри­ческим стимулом вблизи порогового уровня, как уже давно известно, носит вероятностный характер [195 Например, Pecher (1939).]. Глав­ная причина этого состоит в том, что электрический по­тенциал на мембране флуктуирует случайным образом [196 Verveen и de Felice (1974).]. Более того, изменения потенциалов на постсинаптической мембране, вызванные химическими медиаторами, также претерпевают случайные флуктуации [197 Katz и Miledi(1970).], которые обусловлены, по-видимому, вероятностным открытием и закрытием ионных «каналов» на мембране [198 Stevens (1977).].
Вероятностный характер свойствен не только от­кликам постсинаптических мембран на действие хи­мических медиаторов, но также и выходу медиатора из окончаний пресинаптических мембран. Молекулы медиатора хранятся в многочисленных микроскопи­ческих пузырьках (рис. 26) и выделяются в синаптическую щель при слиянии этих пузырьков с мембраной. Этот процесс происходит самопроизвольно через слу­чайные интервалы времени, вызывая так называемые миниатюрные потенциалы концевой пластинки. Ско­рость секреции сильно возрастает, когда на нервное окончание поступает импульс, но и тогда опять-таки слияние везикул с мембраной происходит вероятност­ным образом [199 Katz (1966).].
В мозгу типичная нервная клетка имеет тысячи тон­ких нитеобразных выростов, которые оканчиваются синаптическими контактами с другими нервными клет­ками, и, обратно, отростки сотен или тысяч других нервных клеток оканчиваются синапсами на поверхно­сти данной клетки (рис. 26). Некоторые из этих нерв­ных окончаний выделяют возбуждающие вещества (трансмиттеры), которые способствуют «возгоранию» импульса; другие оказывают ингибирующее действие и уменьшают тенденцию нерва к возбуждению. Вклю­чение импульсов фактически зависит от баланса между возбуждающими и ингибирующими воздействиями со стороны сотен синапсов. Кажется вероятным, что в любой данный момент времени во многих нервных клетках мозга этот баланс находится на столь критичес­ком уровне, что возбуждение происходит или не про­исходит в результате вероятностных флуктуации в кле­точных мембранах синапсов.
Таким образом, детерминистское распространение нервных импульсов с одного участка тела на другой связано с высокой степенью неопределенности (инде­терминизма) в центральной нервной системе, которая, по настоящей гипотезе, упорядочена и организована под действием формативной причинности.

9.6. Морфогенетические поля и моторные поля
Несмотря на то что поля, контролирующие измене­ния формы специализированных двигательных струк­тур животных,— это фактически морфогенетические поля, они вызывают, скорее, движения, нежели из­менения формы. По этой причине кажется более уместным называть их двигательными, или мотор­ными, полями. (Слово «motor» употребляется здесь как прилагательное от существительного «motion» — движение.) Моторные поля, подобно морфогенетическим полям, зависят от морфического резонанса со стороны прошлых подобных систем, и их действие состоит в актуализации виртуальных форм. Канали­зованные пути к конечной форме или состоянию для моторных полей можно назвать хреодами, так же как и для морфогенетических полей.
Моторные поля, как и морфогенетические поля, имеют иерархическую организацию и, вообще говоря, связаны с развитием, выживанием и воспроизведени­ем. В то время как у растений эти процессы почти пол­ностью морфогенетичны, у животных они зависят также и от движения. Действительно, у большинства животных даже поддержание нормальных функций те­ла требует постоянного движения внутренних органов, таких как кишечник, сердце и дыхательная система.
В отличие от растений животные должны питаться другими живыми организмами, чтобы поддерживать свои формы. Поэтому важным общим для всех живот­ных моторным полем является поле питания. Оно уп­равляет вспомогательными полями, ответственными за нахождение, добычу и съедание растения или животно­го, которые служат пищей. Некоторые животные ведут сидячий образ жизни и заставляют еду двигаться к ним, например, с течениями воды; другие просто переходят с места на место, пока не находят растения, которые могут есть; третьи охотятся за другими животными; есть такие, которые делают ловушки, чтобы поймать жертву; некоторые являются паразитами; иные питаются пада­лью и так далее. Все эти способы питания зависят от иерархий специфических хреод.
Другой основной тип моторных полей связан с избе­ганием неблагоприятных условий. Amoeba и Рататесшт проявляют реакции наиболее простого типа: уход назад или в сторону от неблагоприятного стимула и движение в каком-либо ином направлении. Животные, ведущие сидячий образ жизни, такие как Stentor или Hydra, реаги­руют на слабый неблагоприятный стимул сокращением своего тела, но при более сильном стимуле они устрем­ляются прочь и устраиваются где-нибудь в другом месте. В дополнение к общим реакциям избегания многие жи­вотные проявляют также особые виды поведения, кото­рые позволяют им спасаться от хищников: например, они могут быстро убегать, или отстаивать свою позицию и как-либо пугать хищника, или застыть таким образом, что становятся менее заметными.
Конечной формой полных полей развития и выжи­вания является взрослое животное, выросшее в опти­мальных условиях. Когда бы ни достигалось это состо­яние, животному не нужно делать для этого что-либо особенное, но отклонения от такого состояния подвер­гают животное влиянию различных моторных полей, направленных к его восстановлению. В действительно­сти такие отклонения происходят часто: непрерывный метаболизм у животного истощает его запасы пищи; изменения в окружающей среде ставят его в неблаго­приятные условия; к нему неожиданно приближаются хищники. Эти и другие изменения обнаруживаются чувствительными структурами и вызывают характер­ные изменения нервной системы, которые затем ста­новятся структурой зародыша для особого моторного поля.
Конечная форма полного поля воспроизведения есть создание жизнеспособного потомства. У одно­клеточных организмов и у простых многоклеточных животных, таких как гидра, эта цель достигается с помощью морфогенетического процесса: организмы делятся надвое или выталкивают новые особи. Подоб­но этому, примитивные способы полового воспроизве­дения по существу морфогенетичны: многие низшие животные (например, морские ежи), а также низшие растения (например, морской сорняк Fucus) просто выбрасывают миллионы яйцеклеток и сперму в воду вокруг себя.
У более продвинутых животных сперма выделяется не наугад, но поблизости от яйцеклетки в результате спе­циального брачного поведения. Таким образом полное поле воспроизведения начинает охватывать моторные поля поиска партнера, ухаживания, и спаривания. Орга­низмы могут подпадать под влияние первого моторного поля в этом ряду вследствие внутренних физиологичес­ких изменений, сопровождающихся выделением гормо­нов, а также под действием обонятельных, визуальных или иных стимулов от потенциальных партнеров. Конеч­ная точка первого поля создает зародыш для второго и так далее: за поиском партнера следует ухаживание, которое в случае успеха приводит к начальной точке хреоды спаривания. В простейших случаях конечная форма всей цепочки для мужского партнера есть извер­жение (семени), для женского — откладывание яиц. У многих водных организмов яйца просто откладывают­ся в воду, но у земных животных откладывание яиц ча­сто включает сложные и высокоспецифичные модели поведения: например, наездники (вид насекомого) откла­дывают свои яйца в гусеницы определенных видов, в ко­торых развиваются личинки-паразиты, а осы-горшеч­ники делают маленькие горшочки, куда они кладут парализованную жертву, затем откладывают на нее яйца и запечатывают «горшочки».
У некоторых живородящих видов потомство про­сто выталкивается наружу и оказывается покинутым сразу после рождения. Но когда о детенышах заботят­ся сразу после рождения или высиживания, начинает работать новая серия моторных полей, все еще находя­щихся под контролем полного поля воспроизведения родителей, но в то же время обслуживающих и поле развития и выживания детенышей. Следовательно, поведение животных приобретает социальное измере­ние. В простейших случаях такие сообщества носят временный характер и распадаются, когда потомство становится независимым; в других случаях сообщест­ва сохраняются с соответствующим увеличением сложности поведения. Специальные моторные поля управляют различными видами общения между особя­ми и разными задачами, которые выполняют отдель­ные индивидуумы.
В чрезвычайно сложных сообществах термитов, муравьев и общественных пчел и ос особи с подобным или идентичным генетическим строением выполняют совершенно различные задачи, а одно и то же насекомое даже может в разное время играть разные роли: напри­мер, молодая рабочая пчела может сначала чистить улей, затем, через несколько дней, «нянчить» выводящихся пчел, затем строить соты для меда, затем получать и ук­ладывать пыльцу, затем охранять улей и, наконец, выле­тать на поиски пищи [200 Lindauer(1961).]. Каждая из этих ролей должна на­правляться моторным полем высшего уровня, которое контролирует по очереди хреоды низших уровней, опре­деляющие выполнение отдельных специальных задач. Изменения нервной системы насекомых должны ста­вить их под контроль одного или другого из этих полей высших уровней, способствуя их попаданию в морфический резонанс с предшествовавшими работниками, выполнявшими данную отдельную роль. Такие измене­ния до некоторой степени зависят от изменений в физи­ологии насекомого по мере его взросления, но на них сильно влияют также внешние стимулы: роли индивидов изменяются в ответ на повреждения улья или наруше­ния в пчелином сообществе; вся система регулируется.
Моторные поля высших уровней — питания, избе­гания, воспроизведения и т. д.— обычно управляют серией полей низших уровней, которые действуют последовательно, так что конечная форма одного обеспечивает зародышевую структуру для следующе­го. Моторные поля еще более низких уровней в этой иерархии часто действуют циклично, порождая по­вторяющиеся движения, такие как движения ног при ходьбе, крыльев в полете, челюстей при жевании. Самый низкий уровень занимают поля, во всех дета­лях контролирующие сокращение клеток в мускулах.
Моторные поля высших уровней охватывают не только органы чувств, нервную систему и мускулы, но также объекты вне животного. Рассмотрим, напри­мер, моторные поля питания. Полный процесс — поимка и заглатывание пищи — фактически представ­ляет собой особый тип агрегативного морфогенеза (ср. раздел 4.1). Голодное животное является зародышевой структурой и вступает в морфический резонанс с пре­дыдущими конечными формами этого моторного поля, а именно с полями подобных животных, существовав­ших в прошлом (включая его самого), в сытом состоя­нии. Если речь идет о хищнике, достижение этой ко­нечной формы зависит от поимки и заглатывания добычи. Моторное поле поимки распространяется в пространстве вокруг животного и включает в него вир­туальную форму добычи (рис. 11). Эта виртуальная форма актуализируется, когда сущность, достаточно близко ей соответствующая, приближается к хищни­ку: добыча узнается, и активизируется хреода поимки. Теоретически моторное поле может влиять на вероят­ностные события в любой или во всех системах, кото­рые оно охватывает, включая органы чувств, мускулы и саму жертву. Но в большинстве случаев его влияние, вероятно, ограничено модификацией вероятностных событий в центральной нервной системе, что направляет движения животного к достижению конечной формы, в данном случае к поимке добычи.

9.7. Моторные поля и чувства
Посредством морфического резонанса животное попадает под влияние специфических моторных полей вследствие своей характерной структуры и внутренней организации колебательных процессов. Эти процессы изменяются в результате изменений, происходящих в теле животного, и влияний извне.
Если различные стимулы вызывали одинаковые из­менения внутри животного, тогда начинают работать одни и те же моторные поля. По-видимому, это именно то, что происходит в одноклеточных организмах, кото­рые проявляют одну и ту же реакцию избегания в ответ на разнообразные физические и химические стимулы: возможно, все они оказывают одинаковое воздействие на физико-химическое состояние клетки, например изменяя проницаемость клеточной мембраны для каль­ция или других ионов.
У простых многоклеточных животных с относитель­но слабой сенсорной специализацией диапазон реакций на стимулы ненамного больше, чем у одноклеточных. Например, гидра демонстрирует одинаковые реакции избегания на множество различных физических и хими­ческих стимулов и отвечает на объекты, такие как части­цы пищи, только при механическом контакте. Однако, как и у некоторых одноклеточных организмов, ее реак­ция на твердые объекты изменяется под влиянием хими­ческих стимулов. Это можно показать на простом экспе­рименте: если к щупальцам голодной гидры подаются маленькие кусочки фильтровальной бумаги, реакции не наблюдается; но если они предварительно смочены в мясном соусе, щупальца несут их в рот, и затем они проглатываются [201 Jennings (1906).].
Напротив, животные, имеющие глаза, которые формируют образы, могут чувствовать объекты, еще находящиеся на некотором расстоянии от них; следо­вательно, моторные поля здесь распространяются дальше в окружающую среду; диапазон и разнообра­зие поведения животных значительно возрастают. Подобным же образом чувство слуха позволяет обна­руживать удаленные объекты и поэтому позволяет расширить пространственную протяженность мотор­ных полей даже до тех областей, где объект не может быть виден. У некоторых животных, особенно у лету­чих мышей, это чувство заменило зрение как основу протяженных моторных полей. А у некоторых видов, живущих в воде, таких как электрические рыбы (виды Mormyrid и Gimnotid), специализированные рецеп­торы обнаруживают изменения электрического поля вокруг них с помощью импульсов, испускаемых их электрическими органами; это позволяет им опреде­лять местонахождение добычи и других объектов в загрязненных тропических реках, где они обитают.
Когда животные движутся, чувственные стимулы, возникающие как внутри их тел, так и под влиянием среды, изменяются в результате их собственных движе­ний. Эта непрерывная обратная связь играет сущест­венную роль в координации движений их моторными полями.
Подобно морфогенетическим полям, моторные по­ля являются вероятностными структурами, которые с помощью морфического резонанса связываются с фи­зическими системами через их трехмерные колеба­тельные структуры. Поэтому фундаментальное значе­ние имеет тот факт, что все колебательные вводы переводятся в пространственно-временные структу­ры, в которых осуществляется деятельность нервной системы. В чувстве осязания стимулы действуют на оп­ределенные участки тела, которые отмечены («картарованы») в мозгу в результате действия особых нерв­ных путей; в зрении образы, попадающие на сетчатку, вызывают распределенные в пространстве изменения в оптических нервах и зрительной коре; и хотя обоня­тельные, вкусовые и слуховые стимулы не носят непо­средственно пространственный характер, нервы, кото­рые они возбуждают через соответствующие органы чувств, находятся в определенных местах и импульсы, проходящие по этим нервам в центральную нервную систему, создают характерные объемные распределе­ния возбуждения.
Таким образом, отдельные стимулы и их комбина­ции производят характерные пространственно-времен­ные эффекты. Эти динамические картины активности приводят нервную систему в морфический резонанс с подобными прошлыми нервными системами в анало­гичных состояниях, и, следовательно, она попадает под влияние особых моторных полей.
9.8. Регуляция и регенерация
Подобно морфогенетическим полям, моторные поля направляют системы, находящиеся под их влия­нием, к характерным конечным формам. Обычно они достигают этого, стимулируя серию движений в опре­деленной последовательности. Промежуточные стадии стабилизируются с помощью морфического резонанса, другими словами, они являются хреодами. Но хреоды представляют собой просто наиболее вероятные пути к конечным формам. Если нормальный путь заблокиро­ван или если система отклонилась от него по какой-либо причине, та же самая конечная форма может быть достигнута другим путем: система регулируется (раз­дел 4.1). Многие, но не все морфогенетические сис­темы способны к регуляции; таковы и двигательные системы.
Регуляция происходит под действием моторных полей на всех иерархических уровнях: например, если несколько мускулов или нервов в ноге у собаки по­вреждены, организация сокращений в других мускулах регулируется таким образом, что конечность функцио­нирует нормально. Если нога ампутирована, движения оставшихся ног изменяются так, что собака все же может ходить, хотя и хромает. Если повреждены части коры ее головного мозга, через некоторое время он вос­станавливается более или менее полно. Если ее осле­пить, ее способность двигаться постепенно улучшается, по мере того как она начинает более полагаться на ос­тавшиеся чувства. А если прегражден обычный путь к дому, ее еде или щенкам, она изменяет привычную по­следовательность движений, пока не находит новый путь для достижения цели.
Поведенческий эквивалент регенерации встречает­ся тогда, когда конечная форма хреоды была актуализи­рована, но затем разрушена: представьте, например, кота, который поймал мышь, что является конечной точкой хреоды поимки добычи. Если мышь ускользает из его когтей, то движения кота направлены на то, что­бы снова ее поймать.
Из всех примеров поведенческой регенерации ее соответствие регенерации морфогенетической лучше всего обнаруживается в морфогенетическом поведе­нии, связанном с созданием характерных структур. В некоторых случаях животные улучшают эти структу­ры после их повреждения. Например, было сделано наблюдение, что осы-горшечники иногда заполняют отверстия, сделанные экспериментатором в стенках их горшочков, с помощью действий, которые они никогда не совершают при нормальном построении горшоч­ков [202 Hingston (1928).]. А термиты чинят повреждения в своих галереях и гнездах кооперативными и координированными уси­лиями множества отдельных насекомых [203 Marais (1971); von Frisch (1975).].
Эти и подобные действия иногда интерпретирова­лись как свидетельства существования разума на том основании, что животные, действующие строго фикси­рованным образом, задаваемым инстинктом, не были бы способны столь гибко реагировать на необычные ситуации [204 Hingston (1928).]. Но, следуя этой логике, можно было бы ска­зать, что регулирующиеся эмбрионы морских ежей и регенерирующие плоские черви также проявляют при­знаки разума. Однако такое расширение физиологиче­ской терминологии, скорее, внесло бы путаницу, неже­ли оказалось полезным. С точки зрения гипотезы формативной причинности такие подобия признаются, но интерпретируются иначе. Способность животных достигать поведенческих целей необычными путями, рассматриваемая с позиций морфогенетической регу­ляции и регенерации, не дает оснований вводить новые фундаментальные принципы. А когда у высших живот­ных некоторые типы поведения более не следуют стан­дартным хреодам — когда поведенческая регуляция становится, так сказать, скорее, правилом, чем исклю­чением,— эту подвижность можно рассматривать как расширение возможностей, заложенных в самой при­роде морфогенетических и моторных полей.
Глава 10
Инстинкт и обучение
10.1. Влияние прошлых действий
Подобно морфогенетическим полям, моторные поля задаются морфическим резонансом от прошлых подобных систем. Детали строения животного и орга­низация колебательной активности его нервной систе­мы обычно подобны таковым у него самого более, нежели у какого-либо другого животного. Таким обра­зом, наиболее специфическим морфическим резонан­сом, действующим на данное животное, будет резонанс от его собственной формы в прошлом (ср. раздел 6.5). Следующий наиболее специфический резонанс будет от генетически подобных животных, которые жили в тех же условиях, и наименее специфический — от живот­ных других пород, живущих в других условиях. В «до­линной» модели хреоды {рис. 5] последний стабили­зирует общую форму, тогда как более специфический резонанс определяет детали топологии дна этой долины.



Рис. 27. Схематическое изображение глубоко канализиро­ванной хреоды (А) и хреоды, слабо канализированной на на­чальных стадиях (В)


«Контуры» долины хреод зависят от степени подо­бия между поведением родственных животных той же породы или вида. Если их модели движения варьиру­ются слабо, морфический резонанс порождает глубо­кие и узкие хреоды, представленные долинами с кру­тыми краями {рис. 27 А). Такие хреоды оказывают сильное канализирующее действие на поведение по­следующих индивидуумов, которые по этой причине будут стремиться вести себя весьма сходным образом. Стереотипные модели поведения, обусловленные та­кими хреодами, на низших уровнях проявляются как рефлексы, а на высших уровнях — как инстинкты.
С другой стороны, если подобные друг другу живот­ные достигают конечных форм своих моторных полей различными способами движения, хреоды не будут столь четко определены {рис. 27 В); поэтому здесь диа­пазон индивидуальных различий в поведении больше. Но после того как отдельное животное достигло цели своего поведения собственным путем, его последую­щее поведение будет канализироваться по тому же пу­ти вследствие морфического резонанса с его же собст­венными прошлыми состояниями; и чем чаще такие действия повторяются, тем сильнее становится эта ка­нализация. Такие характерные индивидуальные хрео­ды проявляют себя как привычки.
Таким образом, с точки зрения гипотезы форма­тивной причинности между инстинктами и привычка­ми разница лишь в степени: и те и другие зависят от морфического резонанса, первые — с бесчисленными предшествовавшими индивидуумами того же вида, а вторые — преимущественно с прошлыми состояния­ми того же индивидуума.
Этим мы не хотим сказать, что рефлексы и инстинк­ты не зависят от весьма специфически организованно­го морфогенеза нервной системы. Очевидно, что такая зависимость существует. Мы не хотим также сказать, что в процессах обучения не происходят физические или химические изменения в нервной системе, кото­рые облегчают повторение данного вида движения. Возможно, в простой нервной системе, осуществляю­щей стереотипные функции, потенциал для таких изменений может быть уже «встроен» в систему «про­водов» таким образом, что обучение происходит квазимеханически. Например, было обнаружено, что у улитки Aplysia строение нервной системы почти оди­наково у разных особей, вплоть до мельчайших дета­лей расположения возбуждающих и ингибирующих синапсов на отдельных клетках. Очень простые виды обучения встречаются в связи с рефлекторным втяги­ванием жабер во впадину под покровной пластинкой, а именно привыкание к безвредным и приобретение чувствительности к опасным стимулам; при этих про­цессах функционирование отдельных возбуждающих и ингибирующих синапсов, действующих на индиви­дуальные клетки, определенным образом изменяется [205 Kandel (1979).]. Конечно, простое описание этих процессов само по се­бе не выявляет причин таких изменений; в настоящее время можно лишь строить предположения на этот счет. Одно из них состоит в том, что эти модификации химического происхождения и связаны, вероятно, с изменениями в фосфорилировании белков [206 Там же.]. Но как возникла эта тонкая специализация структуры и функ­ций нервов и синапсов? Проблема переносится в об­ласть морфогенеза.
Нервные системы высших животных значительно больше варьируются от индивидуума к индивидууму, чем у беспозвоночных типа Aplysia, и они гораздо слож­нее. Очень мало известно о том, каким образом сохра­няются заученные способы поведения [207 Н. A.Buchtel и G. Berlucchi в Duncan and Weston-Smith (eds) (1977).], но накоплено уже достаточно сведений, чтобы утверждать, что здесь не может быть простого объяснения на уровне специ­фически локализованных физических и химических «следов» в нервной ткани.
Многочисленные исследования показали, что у мле­копитающих привычки, образовавшиеся при обучении, часто сохраняются после значительного повреждения коры и участков подкорки головного мозга. Более того, когда происходит потеря памяти, она не является тесно связанной с местонахождением таких повреждений, но зависит, скорее, от общего количества поврежден­ной ткани. К. С. Лэшли суммировал результаты сотен экспериментов следующим образом:

«Невозможно продемонстрировать изолированный участок как след памяти где-либо в нервной системе. Ограниченные области могут быть существенными для обучения или сохранения определенной активнос­ти, но в таких областях их части в функциональном отношении эквивалентны» [208 Lashley(1970),c. 478.].

Подобный же феномен был продемонстрирован на беспозвоночном — осьминоге: наблюдения сохранения приобретенных привычек после разрушения различ­ных частей вертикальной доли мозга привели к кажу­щемуся парадоксальным выводу, что «память находится везде одновременно и нигде в частности» [209 Boycott (1965).].
С механистической точки зрения эти результаты сильно озадачивают. В попытках найти им объяснение было высказано предположение, что «следы» памяти каким-то образом распределены в мозгу способом, аналогичным тому, который используется при сохранении информации в виде интерференционных картин в голограмме [210 Pribram (1971).]. Но это пока не более чем неопределенное соображение.
Гипотеза формативной причинности дает альтер­нативное объяснение, в котором сохранение приобре­тенных привычек, несмотря на повреждение мозга, выглядит гораздо менее загадочно: привычки зависят от моторных полей, которые вообще не сохраняются в мозгу, но приходят непосредственно от его прошлого состояния путем морфического резонанса.
Некоторые приложения гипотезы формативной причинности применительно к проблемам инстинкта и обучения рассматриваются в следующих разделах, а в главе 11 предлагаются способы, с помощью кото­рых можно экспериментально отличить предсказания, вытекающие из этой гипотезы, от предсказаний меха­нистической теории.

10.2. Инстинкт
У всех животных некие модели двигательной ак­тивности являются, скорее, врожденными, нежели приобретенными в результате обучения. Наиболее фундаментальный характер имеют движения внутрен­них органов, таких как сердце и кишечник, но многие из способов движения конечностей, крыльев и других двигательных структур также являются врожденными. Это наиболее очевидно, когда животные оказываются способными совершать правильные, полезные для них движения почти сразу же после того, как они родились или вылупились из яйца.
Не всегда легко провести различие между врож­денным и «обученным» поведением. Вообще говоря, характерное поведение, которое вырабатывается у молодых животных, воспитанных в изоляции, обычно может рассматриваться как врожденное; с другой стороны, поведение, которое появляется только при контакте с другими особями того же вида, также может быть врожденным, но требуются стимулы от других животных, чтобы оно проявилось.
Исследования инстинктивного поведения многих видов животных привели к нескольким общим выво­дам, которые составляют классические принципы это­логии [211 Обширный обзор и дискуссию см. в Thorpe (1963).]. Их можно суммировать следующим образом:
(1) Инстинкты организованы в виде иерархии сис­тем или центров, наложенных друг на друга. Каждый уровень активируется главным образом системой вышележащего уровня. Самый высокий центр каждого из основных инстинктов может испытывать влияние многих факторов, таких как гормоны, чувственные стимулы изнутри животного и стимулы из окружаю­ щей среды.
(2) Поведение, которое происходит под влиянием основных инстинктов, часто состоит из цепей более или менее стереотипных моделей поведения, называемых фиксированными моделями действия. Когда такая фиксированная модель создает конечную точку главной или малой цепи инстинктивного поведения, ее называют завершающим актом (consummately act). Поведение в ранней части инстинктивной цепи поведения, напри­ мер поиски пищи, может быть более гибким и называется обычно поведением инстинктивной потребности (appetitive behavior).
(3) Для активации, или «освобождения» (release), каждой системе требуется специфический стимул. Этот стимул, или «освободитель» (релизер), может при­ ходить изнутри тела животного или из окружающей среды. В последнем случае его часто называют знаковым стимулом. Предполагается, что данный релизер, или знаковый стимул, воздействует на специфический нейросенсорный механизм, называемый врожденным релизорным механизмом, который дает выход реакции.
Эти положения очень хорошо согласуются с идеей моторных полей, развивавшейся в предыдущей главе. Фиксированные модели действий находят объяснение на языке хреод, а врожденные освобождающие меха­низмы можно представить как структуры зародышей соответствующих моторных полей.

10.3. Знаковые стимулы
Инстинктивные отклики животных на знаковые стимулы показывают, что они как-то выделяют спе­цифические и повторяющиеся особенности в своем окружении.

«Животное "слепо" отвечает только на одну часть окружающей его ситуации и пренебрегает другими ее частями, хотя его органы чувств прекрасно могут их воспринимать. ...Эти эффективные стимулы можно легко обнаружить, проверяя реакцию на разные ситуа­ции, отличающиеся одним или другим из возможных стимулов. Более того, когда орган чувств участвует в "освобождении" реакции, лишь часть стимулов, кото­рые он может получить, действительно являются эффективными. Как правило, инстинктивная реакция отвечает лишь на очень немногие стимулы, а большая часть окружения оказывает незначительное или не оказывает никакого влияния, даже если животное име­ет чувствительные структуры для получения много­численных деталей» (Н. Тимберген) [212 Timbergen (1921), с. 27.].

Эти принципы иллюстрируются следующими при­мерами [213 Там же.]. Агрессивная реакция самца рыбы колюшки в отношении других самцов в сезон размножения высвобождается главным образом знаковым стимулом красного брюшка: модели очень грубой формы, но с красными брюшками атакуются гораздо чаще, чем модели правильной формы, но без красной окраски.
Подобные же результаты были получены в экспери­ментах на красногрудой малиновке: охраняющий территорию самец ведет себя угрожающе по отноше­нию к весьма приблизительным моделям с красными грудками или даже просто к пучку красных перьев, но гораздо слабее реагирует на точные модели птиц без красных грудок.
Молодые утки и гуси инстинктивно реагируют на приближение хищных птиц, причем эта реакция зави­сит от формы птицы в полете. Опыты с моделями из картона показали, что наиболее важным признаком является короткая шея, характерная для ястребов и других хищных птиц, тогда как размер и форма крыль­ев и хвоста имеют сравнительно мало значения.
У некоторых мотыльков сексуальный запах, или феромон, который обычно производят самки, застав­ляет самцов делать попытки к спариванию с любым объектом, обладающим таким запахом.
У саранчи вида Ephippiger ephippiger самцы привле­кают самок, желающих спариваться, своей песней. Самки привлекаются к поющим самцам со значитель­ного расстояния, но молчащих самцов они игнорируют, даже если те находятся поблизости. Самцы, которых заставляют молчать, склеивая их крылышки, неспособ­ны привлекать самок.
Курицы приходят на помощь цыплятам в ответ на их крик о бедствии, но не тогда, когда они просто видят цыплят в беде, например за звуконепроницаемым стеклянным барьером.
Согласно гипотезе формативной причинности, рас­познавание этих знаковых стимулов должно зависеть от морфического резонанса от прошлых подобных жи­вотных, подвергнутых тем же стимулам. Благодаря процессу автоматического усреднения этот резонанс будет усиливать только общие черты пространствен­но-временных моделей активности, вызываемых этими стимулами в нервной системе. Результат состоит в том, что из окружения выделяются лишь некоторые специфические стимулы, тогда как другие игнориру­ются. Рассмотрим, например, стимулы, действующие на кур, чьи цыплята попали в беду. Вообразим набор фотографий цыплят в беде во многих различных случа­ях. Фотографии, сделанные ночью, не отобразят ниче­го; снятые в дневное время покажут цыплят разных размеров и форм, видимых спереди, сзади, сбоку или сверху; более того, они могут быть вблизи других объ­ектов всех форм и размеров или даже спрятаны за ни­ми. Далее, если негативы всех этих фотографий нало­жить друг на друга, чтобы получить составное изображение, в нем не будут усилены какие-либо чер­ты, результатом будет просто расплывшееся пятно. Теперь вообразите, наоборот, магнитофонные записи, сделанные одновременно с фотографиями. На всех бу­дут крики о бедствии, и если эти звуки накладываются друг на друга, они усиливают друг друга, давая в ре­зультате автоматически усредненный крик о бедствии. Это наложение фотографий и магнитофонных запи­сей аналогично эффектам морфического резонанса от нервных систем предыдущих кур с последующей ку­рицей, испытывающей стимул в виде крика цыпленка в беде: зрительные стимулы не возбуждают специфи­ческого резонанса и не вызывают инстинктивной ре­акции, каким бы несчастным ни выглядел цыпленок для наблюдающего человека, в то время как на слухо­вые стимулы реакция есть.
Этот пример иллюстрирует то, что является, по-ви­димому, общим принципом: формы очень часто неэф­фективны в качестве знакового стимула. Возможная причина в том, что они сильно варьируются, поскольку зависят от угла, под которым рассматривается объект. Напротив, цвета гораздо менее зависимы от точки зре­ния, а звуки и запахи вряд ли вообще зависят от нее.
Существенно, что цвета, звуки и запахи играют важ­ную роль как «освободители» инстинктивных реак­ций; а в тех случаях, когда оказывается эффективной форма, имеется некоторое постоянство точки наблю­дения. Например, птенцы на земле видят хищников, летающих над ними, как силуэты и действительно реа­гируют на такие формы. А когда формы, или модели, поведения служат сексуальными знаковыми стимулами, они делают это в сценах ухаживания, или в «представле­ниях», в которых животные принимают различные позы относительно своих потенциальных партнеров. То же справедливо для демонстрации покорности или агрес­сивных намерений.

10.4. Обучение
Можно сказать, что происходит обучение, когда имеется какое-либо относительно постоянное адап­тивное изменение в поведении в результате прошлого опыта. Здесь можно выделить четыре общие кате­гории [214 Thorpe (1963).]:
(1) Наиболее универсальным типом, который обна­руживается даже у одноклеточных организмов [215 Например, Jennings (1906).], явля­ется привыкание, которое можно определить как ос­лабление реакции в результате повторения стимула, не сопровождающегося каким-либо подкреплением его значимости. Известный пример такого рода — исчезновение реакций тревоги или избегания на новые стимулы, которые оказываются безвредными: живот­ные к ним привыкают.
Этот феномен предполагает существование своего рода памяти, позволяющей узнавать стимулы, когда они повторяются. По гипотезе формативной причин­ности это узнавание обусловлено главным образом морфическим резонансом организма с его собствен­ными прошлыми состояниями, включая те, которые были вызваны новыми сенсорными стимулами. Этот резонанс служит для поддержания и фактически для определения идентичности организма с самим собой в прошлом (раздел 6.5). Повторяющиеся стимулы от окру­жения, отклики на которые не подкрепляются, станут действующей частью собственного «фона» организма. Наоборот, любые новые особенности окружения будут выделяться, поскольку они не распознаются как «свои»: обычно реакцией животного будет тревога или избега­ние именно потому, что стимулы ему незнакомы.
В случае некоторых стереотипных ответов, — таких как рефлекс отдергивания рожек у улитки Aplysia, при­выкание может происходить квазимеханистическим образом на основе предсуществующих структурной и биохимической специализаций в нервной системе (раздел 10.1). Но если так, эта специализация является вторичной и возникает, вероятно, в результате ситуа­ции, в которой привыкание более непосредственно зависит от морфического резонанса.
(2) У всех животных врожденные модели двигатель­ной активности выявляются по мере того, как индивид взрослеет. В то время как одни прекрасно действуют в первый же раз, когда они выполняются, другие совер­шенствуются со временем. Например, первые попытки птенца взлететь или детеныша млекопитающего — ходить могут быть успешными лишь отчасти, но они улучшаются после повторных усилий. Не все такие улучшения обусловлены практикой: в некоторых слу­чаях это просто результат созревания и происходит в такой же степени с течением времени у животных, которые были иммобилизованы [216 Hinde(1966).]. Тем не менее многие виды двигательных приемов улучшаются таким спосо­бом, который нельзя приписать созреванию.
С точки зрения гипотезы формативной причин­ности этот тип обучения можно интерпретировать как регуляцию поведения. Морфический резонанс от бесчисленных прошлых особей данного вида автома­тически дает усредненную хреоду, которая руководит первыми попытками животного осуществить опреде­ленную врожденную модель движения. Эта стандарт­ная хреода может дать лишь приблизительно удовле­творительные результаты, например из-за отклонений от нормы органов чувств у животного, или его нервной системы, или двигательных структур. По мере того как движения совершаются, регуляция самопроизвольно вызывает к жизни «тонкие подстройки» к общей хреоде, а также к хреодам низшего уровня, которые она контролирует. Эти «подстроенные» хреоды будут ста­билизироваться путем морфического резонанса с про­шлыми состояниями самого животного, по мере того как будет повторяться эта модель поведения.
(3) Животные могут начать отвечать на какой-либо стимул реакцией, которая в норме вызывается другим стимулом. Такой тип обучения имеет место тогда, ког­да новый стимул действует одновременно или сразу же после начального стимула. Классическими приме­рами являются условные рефлексы, установленные И. П. Павловым на собаках. Например, у собак выде­ляется слюна, когда им предлагают пищу. В повторя­ющихся экспериментах, когда предлагалась пища, звонил колокольчик, и через некоторое время при звуке колокольчика у них начинала выделяться слюна даже в отсутствие пищи.
Крайняя степень выражения обучения этого типа встречается в запечатлении (импринтинге) у птенцов, особенно у утят и гусят. Вскоре после вылупления из яиц они инстинктивно реагируют на любой достаточно большой движущийся объект, следуя за ним. В нормаль­ных условиях это их мать, но они будут следовать также за приемными матерями, людьми или даже неодушев­ленными предметами, которые перед ними двигают. Через сравнительно короткое время они научаются распознавать общие черты движущегося объекта, а позднее и его особые черты. Тогда отклик в виде сле­дования вызывается только определенной птицей, человеком или объектом, который был у них запе­чатлен.
Аналогичным образом животные часто научаются узнавать индивидуальные особенности своих партне­ров или детенышей по виду, запаху или прикоснове­нию. Для развития такого узнавания требуется время: например, пара птиц лысух с только что вылупивши­мися птенцами будет кормить и даже «усыновлять» чужих птенцов, внешне похожих на их собственных, но когда их детенышам исполняется две недели, роди­тели узнают их по индивидуальным особенностям и уже далее не терпят никаких пришельцев, как бы они ни были похожи на их птенцов [217 Thorpe (1963), p. 249.].
Подобный же процесс, вероятно, является при­чиной узнавания определенных мест, таких как гнез­довья, с помощью меток и других связанных с ними особенностей. По-видимому, такой тип обучения игра­ет важную роль в развитии зрительного распознавания вообще. Поскольку стимулы от объекта различаются в зависимости от угла, под которым он наблюдается, животное должно понять, что все они связаны с одной и той же вещью. Подобно этому, ассоциации между различными видами чувственных стимулов от одного и того же объекта — зрительных, слуховых, обонятель­ных, вкусовых и тактильных — обычно должны быть установлены в процессе обучения.
Когда новый и первоначальный стимулы действуют одновременно, на первый взгляд может показаться ве­роятным, что различные наборы физико-химических изменений, вызываемых этими стимулами в мозгу, постепенно становятся взаимосвязанными вследствие частого повторения. Но такая, кажущаяся простой интерпретация сталкивается с двумя трудностями.
Во-первых, новый стимул может иметь место не одно­временно с обычным, но предшествовать ему. В этом случае кажется необходимым предположить, что вли­яние стимула некоторое время сохраняется, так что оно еще присутствует, когда обычный стимул начина­ет действовать. О таком виде памяти можно думать по аналогии с эхом, которое постепенно затихает вдали. Существование такой краткосрочной памяти было продемонстрировано на опыте [218 Spear (1978).]; предположительно ее можно было объяснить действием резонансных (ревербераторных) цепей электрической активности мозга [219 Хотя эта идея, высказанная Хеббом (Hebb, 1949), отстаивалась в течение многих лет, она не была ни обоснованно отвергнута, ни убедительно подтверждена экспериментальными свиде­тельствами.].
Во-вторых, обучение включает, по-видимому, опре­деленные разрывы, оно происходит по ступеням или стадиям. Это может объясняться тем, что связь между новым и начальным стимулами включает установле­ние нового моторного поля: поле, ответственное за начальный отклик, должно быть каким-то образом уве­личено, чтобы оно могло вместить новый стимул. В сущности, происходит синтез, в котором возникает новая моторная единица. А она не может появиться постепенно, но лишь в результате внезапного «кванто­вого скачка» (или нескольких последовательных «скач­ков»).
(4) Наряду с обучением ответу на определенный стимул после его получения животные также могут научиться вести себя так, что они достигают цели в ре­зультате своих действий. На языке школы бихевио­ризма в этой «обусловленности действием» (operant conditioning) ответ, «выдаваемый» животным, пред­шествует подкрепляющему стимулу. Классические примеры такого рода дают крысы в ящиках Скиннера. В этих ящиках имеется рычаг, который, если на него нажать, выдает съедобный шарик. После ряда попыток крыса уже может связывать нажатие рычага с награ­дой. Подобным же образом крысы научаются нажимать рычаг, чтобы избежать болезненной стимуляции электрошоком.
Ассоциация определенной модели движения с на­градой или с избеганием наказания наступает обычно в результате проб и ошибок. Но у приматов, особенно у шимпанзе, было обнаружено существование разума в общем более высокого порядка. В некоторых хорошо известных экспериментах, проведенных более пяти— десяти лет назад, У. Кёлер выяснил, что эти приматы способны решать проблемы с помощью своей «прони­цательности» [220 Kohler(1925).]. Например, несколько шимпанзе поме­щали в высокую камеру с гладкими стенками, на кото­рые нельзя было влезть, с потолка свисала гроздь спелых бананов, причем они были слишком высоко, чтобы их можно было достать. После нескольких попыток добыть этот фрукт, вставая на задние ноги и подпрыгивая, они отказывались от такого способа. Через некоторое время какая-либо из обезьян бросала взгляд вначале на один из множества деревянных ящи­ков, которые были положены в камеру в начале экспе­римента, а потом на бананы. Затем эта обезьяна под­таскивала ящик под бананы и вставала на него. Это не позволяло подняться достаточно высоко, и тогда она приносила другой ящик, ставила его на первый, но и этого было недостаточно, тогда она добавляла третий, вскарабкивалась на него и срывала бананы.
Многие другие примеры такой сообразительности были продемонстрированы впоследствии другими экс­периментаторами: например, в одном эксперименте шимпанзе научились использовать палки, чтобы под­гребать к себе еду, помещенную за пределами клеток и вне их досягаемости. Они делали это быстрее, если им разрешалось играть с палками за несколько дней до эксперимента — в течение этого времени они учи­лись использовать палки в качестве функциональных «удлинителей» своих рук. Так, применение палок для приближения к себе еды представляло «интеграцию двигательных компонент, приобретенных во время предшествующего опыта, в новые подходящие модели поведения» [221 Loizo(1967),p.203.].
При обучении как типа «проб и ошибок», так и с помощью «улавливания отношений» (инсайта) суще­ствующие хреоды объединяются в одно целое (инте­грируются) с новыми моторными полями высшего уровня. Такие синтезы могут происходить только путем внезапных «скачков». Если новые модели по­ведения оказываются успешными, они приобретают тенденцию к повторению. Следовательно, новые мо­торные поля будут стабилизированы морфическим резонансом, когда поведение, усвоенное в результа­те обучения, станет привычным.

10.5. Врожденное стремление учиться
Оригинальность обучения может быть абсолютной: новое моторное поле может возникнуть не только пер­вый раз в истории индивида, но и вообще впервые. С другой стороны, животное способно научиться чему-то такому, что другие особи этого вида уже выучили в прошлом. В этом случае появление соответствующего моторного поля вполне может облегчаться действием морфического резонанса от предшествовавших подоб­ных животных. Если моторное поле все более прочно утверждается в результате повторения у многих инди­видов, обучение, вероятно, будет становиться все более легким: образуется сильная врожденная склонность к усвоению именно такой модели поведения.
Таким образом, «обученное» поведение, которое очень часто повторяется, стремится сделаться полу­инстинктивным. В результате обратного процесса ин­стинктивное поведение может стать полуобученным. Этот последний тип, промежуточный между инстинктивным и обученным поведением, особенно ярко иллюстрируется песнями птиц [222 Thorpe (1963).]. У некоторых видов, таких как лесной голубь и кукушка, мелодия песни является почти полностью врожденной и поэтому ма­ло различается у разных птиц данного вида. Но у дру­гих, например у зяблика, хотя песня имеет общую структуру, характерную для вида, в деталях она отли­чается от птицы к птице; эти различия могут улавли­ваться другими птицами и играть важную роль в их семейной и общественной жизни. Пение птиц, выра­щенных в изоляции, представляет собой упрощенную и довольно невыразительную версию песни их вида; это говорит о том, что ее общая структура является врожденной. Однако при нормальных условиях они разрабатывают и совершенствуют свое пение, имити­руя других птиц того же вида. Этот процесс идет гораздо дальше, например, у пересмешника, который заимствует элементы из песен птиц других видов. А некоторые птицы, особенно попугай и майна, в ис­кусственных условиях неволи часто заходят так далеко, что имитируют людей — своих приемных родителей. У видов птиц, песни которых являются почти полно­стью врожденными, недостаток индивидуальных вари­аций является одновременно причиной и следствием хорошо определенных и высокостабильных моторных хреод (ср. рис. 27 А): чем более повторяется одна и та же схема движения, тем выраженнее станет ее тенденция повторяться в будущем. Но у видов с индивидуальными различиями песни морфический резонанс будет давать менее четко определенные хреоды (ср. рис. 27 В): общая структура хреоды будет задаваться процессом автома­тического усреднения, но детали будут зависеть от ин­дивидуума. Структура движений, которые совершает птица, когда она впервые начинает петь, будет влиять на ее пение в дальнейшем благодаря специфичности морфического резонанса от ее собственных прошлых состоянии; по мере повторения характерная структура песни станет привычной, когда ее индивидуальная хреода углубляется и стабилизируется.
Глава 11
Наследование и эволюция поведения
11.1. Наследование поведения
Согласно гипотезе формативной причинности, наследование поведения зависит от генетической на­следственности, а также от морфогенетических полей, которые контролируют развитие нервной системы и всего животного в целом, а также от моторных полей, создаваемых морфическим резонансом от предыдущих подобных животных. В отличие от этого в общеприня­той теории считается, что врожденное поведение «про­граммируется» в ДНК.
Экспериментов по наследованию поведения прово­дилось сравнительно немного, главным образом пото­му, что их трудно интерпретировать количественно. Тем не менее были сделаны различные попытки такого рода: например, в экспериментах на крысах и мышах поведение «измерялось» скоростью их бега в «колесе», частотой и длительностью их половой активности, интенсивностью дефекации, определяемой как число фекальных шариков, оставляемых на данной площади в единицу времени, способностью к обучению в лаби­ринте и восприимчивостью к аудиогенным инсультам, вызываемым очень сильными шумами. Наследуемый компонент этих реакций демонстрировался выведени­ем потомства от животных с большим или малым количеством полученных очков: потомство обнаруживало тенденцию к получению очков, близких к тем, которые были у родителей [223 Parsons (1967).]. Проблема с исследованиями такого рода состоит в том, что они дают очень мало сведений о наследовании моделей поведения; более того, результа­ты трудно интерпретировать, поскольку на них может влиять множество различных факторов. Например, меньшая скорость вращения колеса или пониженная частота спаривания может быть следствием общего снижения тонуса в результате наследуемой метаболи­ческой недостаточности.
В некоторых случаях причины генетических изме­нений поведения исследовались довольно подробно. У маленького круглого червя (нематоды) Caenorhabditis у некоторых мутантов, которые извиваются ненор­мально, имеются структурные изменения в нервной системе [224 Brenner (1973).]. У дрозофил различные поведенческие мута­ции, устраняющие нормальный отклик на свет, влияют на фоторецепторы или периферические зрительные нейроны [225 Benzer(1973).]. Известно, что у мышей многие мутации вли­яют на морфогенез нервной системы, что приводит к дефектам целых участков мозга. У человеческих существ различные врожденные аномалии нервной системы связаны с аномалиями в поведении, например при синдроме Дауна, разновидности монголизма. На поведение могут влиять также наследственные фи­зиологические и биохимические дефекты: например, у человека состояние фенилкетонурии, связанное с умственной неполноценностью, обусловлено недостат­ком фермента фенилаланингидроксилазы.
Тот факт, что на врожденное поведение влияют генетически обусловленные изменения в структуре и функциях органов чувств, нервной системы и т. д., конечно, не доказывает, что наследование поведения можно объяснить воздействием одних лишь генети­ческих факторов; он показывает только, что для нормального поведения необходимо нормальное тело. Подумайте снова об аналогии с радио: изменения в приемнике влияют на его работу, но это не доказыва­ет, что музыка, которая исходит из громкоговорителя, рождается внутри самого приемника.
В сфере поведения биохимические, физиологичес­кие и анатомические изменения могут предотвратить появление зародышевых структур, и, следовательно, целые моторные поля могут быть не в состоянии дей­ствовать, или они могут оказывать разные количест­венные воздействия на движения, контролируемые этими полями. И действительно, исследования в обла­сти наследования фиксированных моделей действия показывают, что «нетрудно найти вариации, которые незначительно влияют на выполнение этого действия, но такая модель все же проявляется во вполне узнава­емой форме, если она проявляется вообще» [226 Manning (1975), с. 80.].
Наследование моторных полей, возможно, зави­сит от факторов, которые уже обсуждались в связи с наследованием морфогенетических полей (глава 7). Вообще говоря, у гибридов между двумя породами или видами преобладание моторных полей одного над моторными полями другого, вероятно, зависит от от­носительной силы морфического резонанса со сторо­ны родительских типов (ср. рис. 19). Если один при­надлежит к хорошо установившимся породе или виду, а другой — к относительно новым, с малочис­ленной предшествующей популяцией, можно ожи­дать, что моторные поля первого будут доминировать. Но если родительские породы или виды утвердились одинаково хорошо, гибриды будут подпадать под вли­яние их обоих в одинаковой степени.
И это то, что происходит на самом деле. В некото­рых случаях результаты принимают весьма причудли­вую форму, поскольку модели поведения родительских типов несовместимы друг с другом. Один из примеров дают гибриды, которые получаются при скрещивании двух видов неразлучников (небольших попугаев). Оба родительских вида строят свои гнезда из полосок, кото­рые они вырывают из листьев одинаковым способом; но если один (неразлучник Фишера) несет потом эти полоски к гнезду в клюве, другой (неразлучник персиковоликий) переносит их, засовывая между своими перьями. Гибриды выдергивают полоски из листьев нормально, но затем ведут себя весьма странным обра­зом, иногда засовывая полоски между перьев, иногда перенося их в клюве; но, даже когда они переносят их в клюве, они топорщат перья внизу спины и пытаются спрятать туда свои полоски [227 Dilger (1962).].
11.2. Морфический резонанс и поведение: экспериментальная проверка
В механистической биологии проводится резкое различие между врожденным и обученным поведени­ем: предполагается, что первое «генетически запро­граммировано», или «закодировано», в ДНК, тогда как последнее рассматривается как результат физико-хи­мических изменений в нервной системе. Невозможно представить, каким способом эти изменения могут спе­цифически модифицировать ДНК (такое требование выдвигали бы последователи ламаркизма); поэтому считается невозможным, чтобы обученное поведение, приобретенное животным, могло наследоваться его потомством (конечно, исключая «культурное наследо­вание», при котором потомство воспринимает модели поведения от своих родителей).
В противоположность этому, согласно гипотезе формативной причинности, нет качественного разли­чия между врожденным и обученным поведением, поскольку оба зависят от моторных полей, даваемых морфическим резонансом (раздел 10.1). Поэтому эта гипотеза допускает возможную передачу обученного поведения от одного животного к другому и приводит к проверяемым предсказаниям, которые отличаются не только от таковых ортодоксальной теории наследо­вания, но также и от предсказаний ламаркизма.
Рассмотрим следующий эксперимент. Дикие живот­ные помещаются в условия, где они учатся реагировать на данный стимул неким характерным образом. Затем их заставляют повторять эту модель поведения много раз. Согласно гипотезе, новое моторное поле будет уси­лено морфическим резонансом, который не только при­ведет к тому, что поведение обученных животных ста­нет все более привычным, но и повлияет так же, хотя и менее специфично, на других животных, подвергаемых тому же стимулу: чем больше будет число животных, научившихся выполнять данное задание в прошлом, тем легче его будет выучить последующим подобным же животным. Поэтому в экспериментах такого типа долж­на быть возможность наблюдать прогрессивное увели­чение скорости обучения не только у животных, проис­ходящих от обученных предков, но также у генетически подобных животных, происходящих от необученных предков. Это предсказание отличается от такового ла­маркистской теории, согласно которой только потомки обученных животных должны обучаться быстрее. А по общепринятой теории не должно наблюдаться увеличе­ние скорости обучения потомков как необученных, так и обученных животных.
Сказанное можно суммировать следующим обра­зом: повышенная скорость обучения в последователь­ных поколениях как тренированных, так и нетре­нированных линий подтверждала бы гипотезу фор­мативной причинности: увеличение скорости только в тренированных линиях — ламаркизм, а отсутствие такого увеличения в обоих линиях — ортодоксальную теорию.
Эксперименты этого типа фактически уже прово­дились. Результаты подтверждают гипотезу форматив­ной причинности.
Оригинальный эксперимент был начат в Гарварде в 1920 году У. Мак-Дугаллом, который надеялся провес­ти тщательную проверку возможности наследования приобретенных особенностей поведения, предполага­емых ламаркизмом. Экспериментальными животными были белые крысы уистарской (Wistar) линии, которые -бережно выращивались в лабораторных условиях в те­чение многих поколений. Их задача состояла в том, чтобы научиться выбираться из специально сконстру­ированного бака с водой, доплывая до одного из двух проходов, из которого можно было выйти наружу. Ложный проход был ярко освещен, тогда как истин­ный проход не освещался. Если крыса выходила через освещенный проход, она получала удар электрошоком. Два прохода освещались по очереди, один раз — пер­вый, следующий раз — второй. За меру скорости обу­чения принималось число ошибок, которые допускала крыса, прежде чем она усваивала, что выходить надо через неосвещенный проход:

«Некоторым крысам требовалось целых 330 погру­жений, причем приблизительно половина из них сопро­вождалась электрошоком, прежде чем они научались избегать освещенный проход. Во всех случаях процесс обучения внезапно достигал критической точки. В те­чение длительного времени животное выказывало явное отвращение к освещенному проходу, часто коле­балось, прежде чем войти в него, поворачивало назад или отчаянно бросалось внутрь; но, не уловив постоян­ной связи между ярким светом и шоком, оно продолжа­ло устремляться в этот проход столь же часто, как и в другой. Наконец в обучении наступал момент, когда животные, оказавшись перед освещенным проходом, определенно и решительно поворачивали обратно, искали другой, смутно видимый проход и спокойно вы­лезали наружу. После достижения этой точки в обуче­нии ни одно животное не делало ошибку, снова выбирая яркий проход, разве что в очень редких случаях» [228 McDougall (1927), с. 282.].



Рис. 28. Среднее число ошибок у последовательных поколе­ний крыс, отобранных в каждом поколении по медленности обучения (данные из McDougall, 1938)


В каждом поколении крысы, от которых должно было быть выведено следующее поколение, отбира­лись случайным образом до того, как определялась скорость их обучения, тогда как спаривание происхо­дило после их тестирования. Такая процедура была вы­брана для того, чтобы избежать любой возможности сознательного или неосознанного отбора в пользу бо­лее быстро обучающихся крыс.
Этот эксперимент продолжался на протяжении 32 поколений крыс в течение 15 лет. В согласии с тео­рией Ламарка в последовательных поколениях крыс наблюдалась заметная тенденция к увеличению ско­рости обучения. Об этом свидетельствовало среднее число ошибок, которые делали крысы: в первых вось­ми поколениях оно превышало 56, а во второй, третьей и четвертой группах из восьми поколений — соответ­ственно, 41, 29 и 20 [229 McDougall (1938).]. Разница была очевидной не толь­ко в количественных данных, но также в фактическом поведении крыс, которые в последующих поколениях становились более осторожными и опытными [230 McDougall (1930).].
Мак-Дугалл предвидел критику того рода, что, несмотря на случайный отбор родителей в каждом поколении, все же мог вкрасться какой-то отбор в пользу более быстро обучающихся крыс. Чтобы прове­рить такую возможность, он начал новый эксперимент с другой группой крыс, в которой родители действи­тельно отбирались на основе очков, полученных ими в процессе обучения. В одной серии выбирались только быстро, в другой — только медленно обучающиеся кры­сы. Как и ожидалось, потомство быстро обучающихся крыс обучалось сравнительно быстро, а потомство мед­ленно обучающихся — сравнительно медленно. Однако даже в последней серии обучение у последних поколе­ний заметно улучшалось, несмотря на повторяющийся отбор в пользу медленно обучающихся крыс {рис. 28).
Эти эксперименты проводились весьма тщательно, и критики не могли отвергнуть результаты по причине технических изъянов. Но они привлекли внимание к недостаткам в постановке экспериментов: Мак-Дугаллу не удалось осуществить систематическую проверку изменения скорости обучения крыс, родители кото­рых не проходили обучения.
Один из этих критиков, Ф. А. Е. Крю из Эдинбурга, повторил эксперименты Мак-Дугалла с крысами, происходившими от той же инбридинговой линии [231 Инбридинг — родственное спаривание (у жи­вотных) или самоопыление (у растений).— Прим. пер.], используя бак подобной же конструкции. Он включил также параллельную линию «нетренированных» крыс, отдельные из которых тестировались в каждом поколе­нии на скорость обучения, тогда как другие, которые не тестировались, рождали потомство. Через 18 поко­лений в таком эксперименте Крю не обнаружил систе­матического изменения в скорости обучения ни в тре­нированной, ни в нетренированной линиях [232 Crew (1936).]. Вначале казалось, что это порождает серьезные сомнения в ре­зультатах Мак-Дугалла. Однако эти две группы резуль­татов нельзя было непосредственно сравнивать в силу трех обстоятельств. Во-первых, по какой-то причине крысы гораздо легче обучались в опытах Крю, чем в более ранних поколениях Мак-Дугалла. Этот эффект был столь сильно выражен, что значительное число крыс как в тренированных, так и в нетренированных линиях «решали» задачу немедленно, не получая ни единого шока! Средние значения очков у крыс в опы­тах Крю с самого начала были примерно такими же, как у крыс Мак-Дугалла через более чем 30 поколений тренировки. Ни Крю, ни Мак-Дугалл не могли дать удовлетворительного объяснению этому несоответст­вию. Но, как указывал Мак-Дугалл, поскольку цель исследования состояла в том, чтобы выявить любые воздействия тренировки на последующие поколения, эксперимент, в котором некоторые крысы не трениро­вались вообще, а многие другие — очень мало, нельзя было рассматривать как способный продемонстриро­вать такое воздействие [233 McDougall (1938).]. Во-вторых, в результатах Крю обнаруживались большие и кажущиеся случай­ными флуктуации от поколения к поколению, гораздо большие, чем флуктуации в результатах Мак-Дугалла, и эти большие флуктуации вполне могли скрыть любую тенденцию к улучшению очков в более позд­них поколениях. В-третьих, Крю выбрал путь очень жесткого инбридинга (скрещивания очень близких родственников), скрещивая в каждом поколении бра­тьев с сестрами. Он не ожидал, что это даст неблаго­приятный эффект, поскольку крысы происходили от одной главней инбридинговой семьи, с которой все начиналось:

«Даже история моей главной семьи выглядит как эксперимент по инбридингу. Имеются широкая основа семейных линий и узкий кончик двух оставшихся линий. Скорость воспроизведения падает, и угасает одна линия за другой» [234 Crew (1936), с. 75.].

Даже в выживающих линиях многие животные рождались со столь серьезными аномалиями, что их приходилось отбрасывать. Вредные последствия тако­го жесткого инбридинга вполне могли маскировать любую тенденцию к увеличению скорости обучения. В целом эти дефекты эксперимента Крю означают, что его результаты можно рассматривать только как пред­варительные, и сам он фактически признавал, что вопрос остается открытым [235 Tinbergen(1951),c. 201.].
К счастью, эта история здесь не кончается. Экспери­мент был снова проведен У. Е. Эгером и его коллегами в Мельбурне с использованием методов без тех недостат­ков, которые были у Крю. На протяжении 20 лет они измеряли скорости обучения тренированных и нетре­нированных линий в 50 последовательных поколениях. В согласии с данными Мак-Дугалла они обнаружили, что у крыс тренированной линии существует явная тенденция к более быстрому обучению в последующих поколениях. Но точно такая же тенденция была обна­ружена и в нетренированной линии [236 Agar, Drummond, Tiegs and Gunson (1954).].
Можно удивляться, почему же Мак-Дугалл не на­блюдал подобный эффект на своих нетренированных линиях? Ответ состоит в том, что он его наблюдал.
Несмотря на то что он тестировал контрольных крыс, происходивших от исходной главной семьи лишь из­редка, он заметил «неприятный факт, что группы кон­трольных крыс, произведенных от этой семьи в 1926, 1927, 1930 и 1932 годах, демонстрировали уменьшение среднего числа ошибок с 1927-го по 1932 год». Он ду­мал, что этот результат мог быть случайным, но доба­вил следующее:

«Возможно, что выпадение по среднему числу оши­бок периода с 1927-го по 1932 год выражает реальное изменение конституции всей семьи, ее улучшение (относительно этой определенной способности), природу которого я не могу предположить» [237 Rhine and McDougall (1933), с 223.].

С публикацией окончательного отчета группы Эгера в 1954 году закончилась затянувшаяся полемика по поводу «ламаркистского эксперимента Мак-Дугалла». Одинаковое улучшение результатов как в тренирован­ной, так и в нетренированной линиях исключало ин­терпретацию в духе ламаркизма. Вывод Мак-Дугалла был отвергнут, и это, казалось, исчерпывало вопрос. С другой стороны, его результаты получили под­тверждение.
Эти результаты казались совершенно необъясни­мыми; они были бессмысленными с точки зрения какой-либо из действующих концепций и никогда не были доведены до конца. Но они вполне осмысленны в свете гипотезы формативной причинности. Конечно, сами по себе они не могут доказать справедливость этой гипотезы; всегда можно предложить другие объяснения, например то, что последовательные поколения крыс становились все более разумными по неизвестной причине, не связанной с их трени­ровкой [238 Множество возможных объяснений предлага­лось в те времена, когда проводились эти эксперименты; они обсуждаются в статьях Мак-Дугалла, к которым может обратиться заинтересованный читатель. Все эти объяснения при ближайшем рассмотрении оказались неправдо­подобными.
Эгер и др. (1954) заметили, что флуктуации в скоро­сти обучения были связаны с изменениями здоровья и энергичности крыс, простирающимися на несколько поколений. Мак-Дугалл уже отмечал этот эффект. Статистический анализ показал, что действительно существовала низкая, но заметная (на уровне 1% веро­ятности) корреляция между энергией (измеряемой в единицах плодовитости) и скоростями обучения в «тренированной» линии, но не в «нетренированной» линии. Однако, если рассматривались только первые сорок поколений, коэффициенты корреляции были несколько выше: 0,40 в «тренированной» и 0,42 в «нетренированной» линиях. Но хотя эта корреляция может помочь объяснить флуктуации результатов, она не может дать правдоподобного объяснения общей тенденции. Согласно стандартной теории статистики, доля вариации, «объясняемой» коррелированной пе­ременной, есть квадрат коэффициента корреляции, в данном случае (0,4)2 — 0,16. Другими словами, вариа­ции в энергии объясняют лишь 16% изменений в ско­рости обучения.].
В будущих экспериментах наиболее прямым спо­собом проверки действия морфического резонанса, вероятно, будет такой, в котором большое число крыс (или любых других животных) обучается новой задаче в одном месте, а затем такие же крысы учатся выпол­нять ту же задачу в другом месте, за сотни миль от пер­вого, и будет выясняться, есть ли увеличение в скоро­сти обучения у этих последних. Начальная скорость обучения в обеих группах должна быть более или ме­нее одинакова. Тогда, согласно гипотезе формативной причинности, скорость обучения должна прогрессив­но возрастать в том месте, где тренируется большое число животных; и такое же увеличение скорости должно обнаруживаться также в другом месте, даже несмотря на то что здесь число испытуемых крыс очень мало. Очевидно, следует принять меры пре­досторожности, чтобы избежать любых возможных сознательных или неосознанных предубеждений со стороны экспериментаторов. Один из способов может состоять в том, чтобы во втором месте тестировать ско­рости обучения крыс, давая им несколько разных задач с правильным интервалом, например раз в месяц. Затем в первом месте выбирается наугад из этого набо­ра определенная задача, которой обучаются тысячи крыс. Более того, время начала обучения также будет выбрано наугад, например четыре месяца спустя после начала выполнения набора задач во втором месте. Экс­периментаторы во втором месте не будут знать ни то­го, какая задача была выбрана, ни того, когда началось обучение ей в первом месте. Если при этих условиях во втором месте будет обнаружено заметное увеличение в скорости обучения данной задаче после того, как обу­чение началось в первом месте, этот результат будет весомым подтверждением справедливости гипотезы формативной причинности.
Эффект такого типа вполне мог иметь место, когда группы Крю и Эгера повторяли эксперимент Мак-Дугалла. В обоих случаях их крысы с самого начала обучались своей задаче значительно быстрее, чем это делали крысы Мак-Дугалла, когда он впервые начал свой эксперимент [239 Мак-Дугалл установил, что в его первом поколении среднее число ошибок превышало 165. В эксперименте Крю это число равнялось 24, а у Эгера — 72 (см. дискуссии у Crew (1936), Agar, Drummond and Tiegs (1942). Если бы группа Эгера исследовала крыс того же происхождения и использовала бы те же процедуры, что и Крю, их начальное число ошибок могло быть даже меньше, чем у него. Однако вследствие разной родословной их крыс, а также различий в процедуре тестирования результаты не впол­не сравнимы. Тем не менее можно предположить большую легкость обучения в этих последних экспериментах.].
Если предложенный выше эксперимент действи­тельно был бы осуществлен и дал бы положительные результаты, он не мог бы быть полностью воспроиз­водим по самой своей природе, ибо при попытках его повторить на крыс должен будет действовать морфический резонанс от крыс в первоначальном эксперимен­те. Чтобы продемонстрировать тот же эффект снова и снова, было бы необходимо изменить либо задачу, либо вид, тестируемый в каждом эксперименте.

11.3. Эволюция поведения
Хотя палеонтология дает прямые сведения о струк­туре животных, живших в прошлом, она практически ничего не сообщает об их поведении. Вследствие этого большинство представлений об эволюции поведения может основываться не на свидетельствах, пришед­ших из прошлого, но лишь на сравнениях между вида­ми, существующими в настоящем. Так, например, тео­рии эволюции общественного поведения пчел могут строиться путем сравнения ныне существующих общественных видов с обособленными и колониаль­ными видами, предположительно более примитивны­ми. Но сколь бы разумными ни казались эти теории, они всегда будут не более чем спекулятивными [240 Brown (1975).]. Более того, теории эволюции поведения зависят от предполо­жений относительно способа наследования поведения, поскольку на сегодняшний день об этом фактически известно очень немного.
Механистическая, или неодарвинистская, теория предполагает, что врожденное поведение «программи­руется», или «кодируется», в ДНК и что новые типы поведения обусловлены случайными мутациями. За­тем естественный отбор благоприятствует полезным мутантам — так развиваются инстинкты. Предполага­ется, что случайные мутации дают животным также способности к определенным видам обучения. Тогда животные, у которых выживаемость и воспроизводст­во себе подобных выигрывают от этих способностей, переживают в результате естественного отбора. Таким образом развиваются способности к обучению. Даже то, что обученное поведение имеет тенденцию стано­виться врожденным, можно приписать случайным мутациям, основываясь на гипотетическом эффекте Болдуина: животные могут реагировать на новые ситу­ации, обучаясь соответствующим способам поведения; случайные мутации, которые вызвали к жизни эти типы поведения без необходимости обучения, будут закрепляться естественным отбором; таким образом, поведение, которое вначале было приобретенным, мо­жет стать врожденным не из-за наследования приобре­тенных признаков, а потому что случайно произошли соответствующие мутации.
Кажется, практически не существует предела тому, что может быть объяснено с помощью благоприятных случайных мутаций, которые изменяют «генетическое программирование» поведения. Затем эти неодарви­нистские теории могут быть разработаны в математи­ческой форме посредством вычислений, основанных на формулах теоретической популяционной генетики [241 Многочисленные примеры спекуляций этого типа можно найти у Уилсона (Wilson, 1975) и Докинза (Dawkins, 1976).]. Но поскольку эти спекуляции невозможно проверить, они не имеют независимой научной ценности; они лишь развивают механистические допущения, из кото­рых проистекли.
Гипотеза формативной причинности приводит к совершенно отличным интерпретациям эволюции поведения. Можно ожидать, что естественный отбор приводит к изменениям «генных пулов» популяций до той степени, в какой генетические изменения влияют на поведение. Но сами специфические модели поведения зависят от наследования моторных полей путем морфического резонанса. Чем больше повторяется данная модель поведения, тем сильнее становится этот резонанс. Таким образом, повторение инстинктивного поведения будет все более и более закреплять ин­стинкты. С другой стороны, если тип поведения варьи­руется от индивидуума к индивидууму, морфический резонанс не даст четко оформленных хреод; следова­тельно, поведение будет менее стереотипным. И чем больше разнообразия в поведении, тем больше будет диапазон вариаций в будущих поколениях. Этот тип эволюции в направлении, допускающем появление разума, до некоторой степени осуществился у птиц, еще более у млекопитающих и более всего у человека.
В некоторых случаях полуобученное поведение должно было развиться из основы, в которой оно было полностью инстинктивным. Одним из путей такой эво­люции могла быть гибридизация пород с различными хреодами, вызывающая появление составных (компо­зитных) моторных полей с большим диапазоном инди­видуальных вариаций.
В других случаях полуинстинктивное поведение мог­ло эволюционировать из поведения, которое изначально было обученным, в результате частых повторений. Рас­смотрим, например, поведение различных пород собак. Овчарки в течение многих поколений обучались и от­бирались по способности загонять овец, охотничьи соба­ки — по способности находить и подавать дичь, пойнте­ры — делать стойку, гончие на лис — преследовать лис и так далее. Собаки часто проявляют врожденное стрем­ление к поведению, характерному для их породы, даже раньше, чем их начинают обучать [242 Например, Clarke (1980).]. Возможно, такие тенденции не столь сильны, чтобы их можно было на­звать инстинктами, но они достаточно сильны, чтобы показать, что между инстинктом и наследственной пред­расположенностью к обучению определенным типам поведения существует различие лишь в степени. Ко­нечно, породы собак развивались в условиях, скорее, искусственного, чем естественного отбора, но кажется вероятным, что в обоих случаях действуют одинаковые принципы.
Хотя относительно легко представить, как некото­рые типы инстинктивного поведения могли развиться путем повторения обученного поведения в одном поко­лении за другим, это не может легко объяснить эволю­цию всех типов инстинкта, особенно у животных с очень ограниченной способностью к обучению. Быть может, некоторые новые инстинкты появились из но­вых изменений и сочетаний инстинктов, существовав­ших ранее; одним из возможных путей здесь могла быть гибридизация пород или видов с различными моделями поведения. Другой путь появления новых комбинаций — включение в старые модели «сдвиговых видов деятельности» (displacement activities), то есть кажущихся неадекватными действий животных, «раз­дираемых» противоречащими друг другу инстинктами. Таким путем вполне могли возникнуть некоторые виды ритуалов ухаживания [243 Tinbergen (1951).]. Можно представить также, что мутации или необычные условия среды могут сделать животное способным «настраиваться» на моторные хреоды других видов (ср. раздел 8.6).
Но в дополнение к рекомбинации существующих хреод должен быть также способ, посредством кото­рого совершенно новые моторные поля возникают у животных, поведение которых почти полностью инстинктивно. Новые модели поведения могут по­являться только в том случае, если привычное повто­рение наследственного поведения было заблокирова­но в результате либо изменения окружения, либо мутации, изменившей нормальную физиологию или морфогенез животного. В большинстве таких случаев животное будет действовать некоординированно и неэффективно, но иногда при этом может возникать и новое моторное поле. И когда бы новое поле ни по­явилось впервые, должен произойти «скачок», кото­рый не может быть полностью объяснен действием предшествовавших энергетических или формативных причин (разделы 5.1, 8.7).
Если модель поведения, обусловленная новым мо­торным полем, нарушает способность животных к вы­живанию и воспроизведению, она не станет повто­ряться очень часто, ибо животные, которые повторяют такое поведение, будут устранены (элиминированы) действием естественного отбора. Но если эта модель поведения помогает животным выживать и воспроиз­водиться, она будет повторяться часто и поэтому будет все более усиливаться морфическим резонансом. Таким образом, моторному полю будет благоприятст­вовать естественный отбор.

11.4. Поведение человека
Высшие животные часто ведут себя более гибко, чем низшие животные. Однако эта гибкость ограничена ранними стадиями поведенческого ряда, и особенно на­чальной фазой, обусловленной потребностью в пище; более поздние стадии, и в частности акт осуществления, протекают стереотипным образом как фиксированные модели поведения (раздел 10.1).
В «ландшафтной» модели главное моторное поле может быть представлено широкой долиной, которая затем сужается, края ее становятся все более крутыми и, наконец, она заканчивается глубоким каньоном {рис. 27 В). Широкая долина соответствует фазе пита­ния, на которой можно использовать множество аль­тернативных путей; затем эти пути сливаются, так как они «втягиваются в воронку» по направлению к сильно канализованной хреоде конечного акта.
В человеческом поведении круг возможностей, используемых для достижения поведенческих целей, гораздо шире, чем у любого другого вида, но и здесь, по-видимому, применимы те же принципы: под воздей­ствием моторных полей высших уровней модели пове­дения «втягиваются в воронку», ведущую к стереотип­ным актам осуществления, которые обычно являются врожденными. Например, люди получают пищу всевоз­можными способами: либо непосредственно — охотясь, ловя рыбу, пася скот или возделывая поле, либо косвен­но — выполняя различные работы. Затем еду готовят множеством различных способов и переносят в рот так­же по-разному, например рукой, палочками для еды или ложкой. Но способы жевания еды различаются весьма незначительно, а завершающий акт всего моторного поля питания, глотание, одинаков у всех людей. Подоб­но этому, в поведении, управляемым моторным полем репродукции, методы ухаживания и системы вступле­ния в брак широко варьируются, но завершающий акт совокупления, к которому они ведут, более или менее стереотипен. У мужчин конечная фиксированная мо­дель поведения, извержение семени (эякуляция), проте­кает автоматически и фактически является врожденной.
Таким образом, большое разнообразие моделей поведения человека обычно направлено к ограничен­ному числу целей, задаваемых моторными полями, унаследованными от предшествовавших членов вида путем морфического резонанса; в общем случае эти цели связаны с развитием, сохранением или воспро­изведением индивидуума или социальной группы. Даже игра и исследовательская деятельность, не на­правленные непосредственно к этим целям, часто помогают достичь их позднее, как они делают это у других видов. Поскольку ни игра, ни «обобщенное исследовательское питательное поведение» в отсутст­вие немедленной награды не ограничены только человеком: например, крысы исследуют свое окружение и объекты в нем, даже когда они сыты [244 Thorpe (1963).].
Однако не вся человеческая деятельность подчи­нена моторным полям, которые канализируют ее в направлении биологических или социальных целей; некоторые виды деятельности явно направлены к трансцендентным целям. Этот тип поведения в наибо­лее чистом виде представлен жизнью святых. Но ясно, что преобладающая часть поведения большинства че­ловеческих существ не имеет такой трансцендентной направленности.
Несмотря на то что диапазон различий человеческо­го поведения очень широк, когда рассматривается вид в целом, в любом данном обществе деятельность инди­видуумов лежит в пределах ограниченного числа стан­дартных моделей. Люди обычно повторяют характер­ным образом структурированные виды деятельности, которые уже выполнялись снова и снова многими поко­лениями их предшественников. Эти виды включают: знание определенного языка; двигательные навыки, связанные с охотой, сельским хозяйством, ткачеством, изготовлением инструментов, приготовлением пищи и так далее; пение и танцы; а также типы поведения, специфичные для определенных социальных ролей.
Все модели деятельности, характерные для данной культуры, можно рассматривать как хреоды [245 В особенности язык представляет прекрасный пример иерархической организации моторных полей, и Р. Том уже положил начало развитию теории языка в рамках модели хреод (см. его «Sructural Stability and Morphogenesis», глава 6).]. Чем чаще они повторяются, тем более они будут стабилизи­рованы. Но из-за приводящего в замешательство изо­билия таких специфичных для культуры наборов хреод, каждая из которых потенциально способна канализировать движения любого человеческого су­щества, сам по себе морфический резонанс не может ввести индивидуума скорее в один набор хреод, чем в другой. Так что ни одна из этих моделей поведения не проявляется спонтанно: все их нужно узнать. Индиви­дуум побуждается (инициируется) другими членами общества к принятию определенных моделей поведе­ния. Затем, когда процесс обучения начинается, обычно путем подражания осуществление опреде­ленной модели движения приводит человека в состо­яние морфического резонанса со всеми, кто следовал этой модели в прошлом. Следовательно, обучение облегчается, когда индивидуум «настраивается» на специфические хреоды.
Процессы инициации и в самом деле традиционно понимаются примерно в таких же терминах, какие упомянуты выше. Предполагается, что человек входит в состояния или способы существования, которые предшествуют ему и представляют своего рода трансперсональную реальность.
Облегчение обучения посредством морфического резонанса было бы трудно продемонстрировать в слу­чае давно установившихся моделей поведения, но из­менение в скорости обучения должно обнаруживаться легче при двигательных моделях недавнего происхож­дения. Так, например, в настоящем столетии должно было становиться все легче и легче обучаться езде на велосипеде, вождению автомобиля, игре на фортепи­ано или работе на пишущей машинке, благодаря куму­лятивному морфическому резонансу от большого числа людей, которые уже приобрели эти навыки. Однако, даже если бы надежные количественные данные пока­зали, что скорости обучения действительно возросли, интерпретировать эти данные было бы сложно вследст­вие возможного влияния других факторов, наподобие усовершенствования конструкции машины, улучшения методов обучения и более высоких побуждений к обу­чению. Но при специально поставленных эксперимен­тах, в которых приняты меры к тому, чтобы эти фак­торы сохранялись постоянными, было бы вполне возможно получить убедительные свидетельства суще­ствования предсказываемого эффекта.
Гипотеза формативной причинности применима ко всем аспектам поведения человека, в которых повторя­ются определенные модели движения. Но она не может объяснить происхождение этих моделей. Здесь, как и в других случаях, проблема творческой деятельности (creativity) лежит вне пределов естественной науки, и ответ может быть дан лишь с позиций метафизики (ср. разделы 5.1, 8.7 и 11.3).
Глава 12
Четыре возможных вывода
12.1. Гипотеза формативной причинности
Представление гипотезы формативной причинно­сти в предыдущих главах этой книги может рассмат­риваться лишь как предварительный набросок: гипо­тезу можно разработать гораздо более детально как в сфере биологии, так и в области физики. Но до тех пар, пока некоторые из ее предсказаний не будут про­верены, побудительный мотив к такой проверке бу­дет, вероятно, весьма слабым: только если получены убедительные положительные результаты, гипотеза может казаться заслуживающей того, чтобы ею зани­маться, по крайней мере в ее настоящем виде. Приме­ры возможных экспериментальных тестов были даны в разделах 5.6, 7.4, 7.6, 11.2 и 11.4; можно придумать и другие.
Гипотеза формативной причинности есть проверяе­мая гипотеза об объективно наблюдаемых закономер­ностях, существующих в природе. Она не может дать никаких ответов на вопросы, поставленные появлени­ем новых форм и новых моделей поведения или фактом субъективного опыта. На такие вопросы могут ответить лишь теории реальности, идущие далее, нежели теории естественной науки, иными словами — метафизичес­кие теории.
В настоящее время научные и метафизические во­просы часто смешиваются друг с другом из-за тесной связи между механистической теорией жизни и мета­физической теорией материализма. Последнюю мож­но было бы отстоять, если бы механистическая теория в биологии была заменена на гипотезу формативной причинности или вообще на какую-либо другую гипо­тезу. Но тогда она потеряла бы свое привилегиро­ванное положение; она должна была бы вступить в свободное соревнование с другими метафизическими теориями.
Чтобы проиллюстрировать важное различие между сферами науки и метафизики, в следующих разделах мы кратко излагаем четыре метафизические теории. Все они в равной степени совместимы с гипотезой формативной причинности, и с точки зрения естест­венной науки выбор между ними может быть оставлен только полностью открытым.

12.2. Модифицированный материализм
Материализм начинает с допущения, что реальна только материя; отсюда все, что существует, есть либо материя, либо нечто, полностью зависимое от нее. Однако понятие «материя» не имеет фиксированного, строго определенного смысла; в свете представлений современной физики оно уже было распространено на физические поля, и материальные частицы стали рас­сматриваться как формы энергии. Соответственно должна была быть модифицирована философия мате­риализма.
Морфогенетические поля и моторные поля связаны с материальными системами; они также могут рассмат­риваться как аспекты материи (раздел 3.4). Таким обра­зом, материализм может быть модифицирован далее, чтобы включить гипотезу формативной причинности [246 Некоторые из современных версий философии диалектического материализма, вероятно, могли бы дать хорошую отправную точку для развития модифицированного материализма в указанном смысле. Они уже включают в себя многие аспекты организмического подхода и основаны на идее о том, что эволюция есть] свойство реальности (Graham, 1972).].
В нижеследующем обсуждении эта новая форма мате­риалистической философии будет называться моди­фицированным материализмом.
Материализм a priori отрицает существование како­го-либо нематериального причинного фактора; физи­ческий мир считается причинно замкнутым. Следова­тельно, здесь не может быть такого понятия как нематериальное «я», которое действует на тело, как это кажется возможным с субъективной точки зрения. Скорее, сознательный опыт либо в некотором смысле тождествен материальным состояниям сознания, либо он просто протекает параллельно этим состояниям, не влияя на них [247 Изложение истории и критический анализ раз­ личных материалистических теорий содержит­ся в главах сэра Карла Поппера в Popper and Eccles (1977).]. Но, в то время как в традиционном материализме считается, что состояния мозга опреде­ляются комбинацией энергетической причинности и случайных событий, в модифицированном материализ­ме они определялись бы, в дополнение к этому, еще и формативной причинностью. Действительно, возмож­но, что сознательный опыт лучше всего представить как аспект или эпифеномен моторных полей, действу­ющих в мозгу.
Согласно гипотезе, субъективный опыт свободной воли не может соответствовать причинному влиянию нематериального «я» на тело. Однако можно допус­тить, что некоторые из случайных событий в мозгу могут субъективно переживаться как свободные выбо­ры; но эта кажущаяся свобода была бы не чем иным, как аспектом эпифеномена случайной активации, ско­рее, одного моторного поля, нежели другого.
Если весь сознательный опыт просто сопровождает моторные поля, действующие на мозг, или существует параллельно с ними, то сознательная память, подобно памяти моторных (двигательных) привычек (ср. раздел 10.1), должна зависеть от морфического резонанса со стороны прошлых состояний мозга. Ни сознательная, ни бессознательная память не может сохраняться в мозгу.
В контексте традиционного материализма свиде­тельства о парапсихологических феноменах могут только отрицаться, игнорироваться или оправдываться (известными причинами), коль скоро они кажутся необъяснимыми в рамках концепции энергетической причинности. Но модифицированный материализм вполне допускает более позитивную позицию. Ибо нельзя считать невозможным, что некоторые из якобы существующих феноменов могут оказаться совмести­мыми с гипотезой формативной причинности: в част­ности, можно предложить объяснение телепатии, используя представление о морфическом резонанс [248 Гипотеза о том, что как телепатия, так и память могут получить объяснение как трансвременной и транспространственный «резонанс» между подобными сложными системами, фактически уже была выдвинута Маршаллом I (Marshall, 1960); и в самом деле, его предположение в нескольких важных аспектах предвосхищает идею морфического резонанса.], а психокинеза — через модификацию вероятностных событий в объектах, находящихся под воздействием моторных полей [249 Хотя телепатию и телекинез можно в принципе объяснить в рамках гипотезы формативной причинности, трудно себе представить, как эта; гипотеза может помочь объяснить некоторые другие явления, такие как ясновидение, которое является непреодолимой проблемой для любой физической теории. Обзор различных теорий, физических и нефизических, которые были предложены для объяснения упомянутых феноменов парапсихологии, имеется у Pao (Rao, 1977).].
Происхождение новых форм, новых типов поведе­ния и новых идей не может быть объяснено с помощью предсуществующих энергетических или формативных причин (разделы 5.1, 8.7, 11.3, 11.4). Более того, матери­ализм отрицает существование каких-либо нематери­альных творческих сил, которые могут их породить. Следовательно, они не имеют причины. Поэтому их происхождение должно быть приписано случаю, и эво­люция может рассматриваться лишь как взаимодейст­вие случая и физической необходимости.
В целом можно заключить, что, согласно этой моди­фицированной философии материализма, Вселенная состоит из материи и энергии, которые происходят либо из вечного, либо из неизвестного источника, организованы в виде огромного разнообразия неорга­нических и органических форм, которые все возникли по воле случая, управляемого законами, которые не­возможно объяснить. Опыт сознания является либо аспектом, либо протекает параллельно с воздействием моторных полей на мозг. Вся человеческая творческая деятельность, так же как и эволюционное творчество, должна быть в конечном счете приписана случаю. Человеческие существа принимают ту или иную веру или убеждения (включая веру в материализм) и осуще­ствляют свои действия в результате случайных собы­тий и физической необходимости в их мозге. Челове­ческая жизнь не имеет цели, помимо удовлетворения биологических и социальных потребностей; ни эволю­ция жизни, ни эволюция Вселенной в целом не имеют какой-либо цели или направления.

12.3. Сознательное «я»
В противоположность философии материализма можно допустить, что сознательное «я» имеет реаль­ность, которая не является лишь производной от ма­терии. Можно, скорее, принять, нежели отвергнуть, что сознательное «я» одного человека обладает спо­собностью делать свободный выбор. Тогда по анало­гии можно допустить, что и все другие люди являются сознательными существами, обладающих такой же способностью.
Этот взгляд с позиции «здравого смысла» приводит к выводу, что сознательное «я» и тело взаимодейст­вуют между собой. Но тогда как же происходит это взаимодействие ?
В механистической теории жизни сознательное «я» должно рассматриваться как своего рода «дух в машине» [250 Ryle (1949).]. Для материалистов такое представление кажется абсурдным по своей природе. И даже защит­ники позиции интеракционизма оказались неспособ­ны определить, как происходит это взаимодействие, высказывая лишь неопределенное предположение, что оно каким-то образом зависит от модификации квантовых событий в мозгу [251 Например, Eddington (1935), Eccles (1953), Wal­ker (1975).].

<< Предыдущая

стр. 4
(из 7 стр.)

ОГЛАВЛЕНИЕ

Следующая >>